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Figure S1. Synthetic scheme of PAA-g-PEG.
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Figure S2. (a) Chemical structure of PAA-g-PEG and the equation used to calculate the PEG 

grafting degree; (b) 1H-NMR spectra of PAA-g-PEG polymers with different PEG grafting 

ratios, calculated based on the integration ratio of PEG methylene protons to PAA backbone 

protons.
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Figure S3. (a) FTIR spectra of PEGDA, VEC, and SIPN-8:2; (b) transformation into a SIPN 

structure after heat treatment at 75°C for 24 h.
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Figure S4. (a) Synthetic scheme of PYR14-TFSI; (b) 1H-NMR of PYR14-TFSI.
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Figure S5. Gel fraction of SIPN membranes with varying PAA-g-PEG/PEG-x-VEC ratios.
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Figure S6. (a) Ionic conductivity and (b) stress–strain curves of the SIPN membrane before 

and after bending.
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Figure S7. Nyquist plots of SIPN-8:2 cell before and after cycling at (a) various current 

densities, and (b) at 0.25 mA cm-2 current density of for 1000 h cycling.



S-9

Figure S8. SEM images of lithium metal surfaces (a) before and (b) after cycling in the SIPN-

8:2 membrane.
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Figure S9. Nyquist plots measured before and after 300 cycles of Si/SIPN membrane/Li half 
cell.
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Figure S10. Cross-sectional FESEM images along with EDS mapping of silicon anodes (a) 

before cycling, and after 300 cycles with (b) liquid electrolyte and (c) the SIPN-8:2 membrane.
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Figure S11. Nyquist plots measured before and after 300 cycles of Si/SIPN membrane/LFP 
full cell.
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Figure S12. Cycling performance of Si//LFP cell assembled with SIPN-8:2 membrane at 1.0 
C-rate.
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Figure S13. Chronoamperometry curves and interfacial resistance before and after polarization 

of SIPN membranes with different PAA-g-PEG/PEG-x-VEC ratios.
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Table S1. Composition of SIPN membranes

Crosslinked network
Sample PAA-g-PEG matrix 

(wt%) PEGDA (wt%) VEC (wt%)

SIPN-10:0 100 0 0

SIPN-9:1 90 5 5

SIPN-8:2 80 10 10

SIPN-7:3 70 15 15

SIPN-6:4 60 20 20
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Table S2. Comparison of ionic conductivity and Li+ transference number of the SIPN-8:2 

membrane with other polymer electrolytes. 

 

Sample
Temperature

(oC)
σ 

(mS cm-1)
tLi+ Reference

SIPN-8:2 solid electrolyte RT 1.61 0.64 This work

PTEC-LiTFSI RT 0.0112 0.39 [1]

P(EC/EO) gel electrolyte 60 0.48 0.66 [2]

BCP/LiTFSI/PEG250 RT 0.6 0.35 [3]

PEO/TDI-TiO2 composite 30 0.1 0.36 [4]

LiBOB/3-methoxysilyl-terminate PP RT 0.26 0.65 [5]

PEO/IL/glass fiber composite 30 0.33 0.33 [6]
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Table S3. Comparison of the performance of Si-based cells based on PAA-g-PEG/PEG-x-VEC 

membranes with those based on other recently reported electrolytes.

Full cell Current 
density

Cycle 
number

Capacity 
retention 

(%)

Temperature 
(℃) [Ref]

Si/In-situ PDOL-10FEC/LFP 0.5 C 300 76.3% - [7]

Si/PPC-garnet/LFP 0.1 C 100 82.6% - [8]

Si-PAN/SE/NMC811 0.1 C 100 77.7% 60℃ [9]

Si-Gr/TXE-based quasi-solid-
state electrolyte/NCM622 0.5 C 200 86% RT [10]

Si/PHP-L15/LFP 1.0 C 100 81% 60℃ [11]

Si@LiAlO2/NCM811@Li2Si
Ox

0.5 C 150 77% - [12]

Si/LLZTO/LFP 8 μA 
cm−2 100 72% RT [13]

Si@SiO2@LPO@C 
/PEO@LATP/ NMC811 0.5 A g−1 200 44% - [14]

Si−C/SE/NCM 0.2 
mA cm−2 50 87.7 - [15]

Si/PAA-g-PEG/PEG-x-
VEC/LFP 0.5 C 300 80.6% RT This 

work
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