Supporting Information

Optimizing the Energy Storage Performance of Titanium Carbonitride MXenes for Potassium-Ion Batteries by Modulating Nitrogen Content

Jingguo Wang^{†1}, Wenyuan Zhang^{†2}, Yanling Si^{1*}, and Guochun Yang^{2*}

¹ School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China. Email: siyl@ysu.edu.cn ²State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China. Email: yanggc468@nenu.edu.cn

Index

Page

1. Space group and cohesive energies of the $Ti_3(C_{1-y}N_y)_2$ MXenes	.2
2. Mechanical property parameters of four $Ti_3(C_{1-y}N_y)_2$ MXenes	.2
3. Stable adsorption sites and adsorption energies of K on $Ti_3(C_{1-y}N_y)_2$ surfaces	.2
4. The lattice changes of $Ti_3(C_{1-y}N_y)_2$ after adsorption of different concentrations of K	.3
5. The average adsorption energy of different concentrations of K on $Ti_3(C_{1-y}N_y)_2$ MXenes	3
6. The crystal structures for $Ti_3(C_{1-y}N_y)_2$ MXenes	.4
7. The Ab-initio Molecular Dynamics simulation of $Ti_3(C_{1-y}N_y)_2$ MXenes	.4
8. The band structures of $Ti_3(C_{1-y}N_y)_2$ MXenes	.5
9. Adsorption site of K on Ti ₃ (C _{1-y} N _y) ₂ MXenes	.5
10. The charge density difference of K-ion adsorbed on $Ti_3(C_{1-y}N_y)_2$ MXenes	6
11. The diffusion paths and the corresponding diffusion energy barriers of K-ion on $Ti_3(C_{1-y}N_y)_2$ MXenes	6
12. The Ab-initio Molecular Dynamics simulation of $K_3Ti_3(C_{0.5}N_{0.5})_2$ MXenes	.6
13. The voltage platform of $Ti_3(C_{1-y}N_y)_2$ MXenes	.7
14. Side view of electron localization function (ELF) map of K ₃ Ti ₃ (C _{0.5} N _{0.5}) ₂	.7
15. Side view of the $K_x Ti_3(C_{0.875}N_{0.125})_2$ structures with varying potassium concentrations ($x = 1, 2, 3$)	7
16. Side view of the $K_x Ti_3(C_{0.75}N_{0.25})_2$ structures with varying potassium concentrations ($x = 1, 2, 3$)	8
17. Side view of the $K_x Ti_3(C_{0.625}N_{0.375})_2$ structures with varying potassium concentrations ($x = 1, 2, 3$)	8
18. Side view of the $K_x Ti_3(C_{0.5}N_{0.5})_2$ structures with varying potassium concentrations ($x = 1, 2, 3$)	.8

structure	Space group	Cohesive energies (eV)
Ti ₃ (C _{0.875} N _{0.125}) ₂	<i>P</i> 3 <i>m</i> 1	-7.0760
	Pm	-7.0243
$Ti_3(C_{0.75}N_{0.25})_2$	<i>P</i> -3 <i>m</i> 1	-7.0277
	C2/m	-7.0277
\mathbf{T} : (C N)	Ст	-6.9727
113(C0.6251N0.375)2	<i>P</i> 3 <i>m</i> 1	-6.9659
	<i>P</i> 3 <i>m</i> 1	-6.9030
	<i>P</i> 3 <i>m</i> 1	-6.9126
Ti ₃ (C _{0.5} N _{0.5}) ₂	Ст	-6.9126
	<i>C</i> 2	-6.9159
	P2/m	-6.9159
	P21/m	-6.9158

Table S1 Space group and cohesive energies of the $Ti_3(C_{1-y}N_y)_2$ MXenes.

Table S2 Independent elastic constants (C_{ij}), _{Young's} modulus (Y^{2D}) in N m⁻¹ and Poisson's ratio (V^{2D}) of Ti₃($C_{1-y}N_y$)₂ MXenes.

	C ₁₁	C ₂₂	C ₁₂	C66	Y ^{2D} [01]	Y ^{2D} [10]	V ^{2D} [01]	V ^{2D} [10]
Ti ₃ (C _{0.875} N _{0.125}) ₂	247.513	247.513	49.425	99.044	237.644	237.644	0.200	0.200
Ti ₃ (C _{0.75} N _{0.25}) ₂	252.339	0.265	53.764	99.287	240.884	240.884	0.213	0.213
Ti ₃ (C _{0.625} N _{0.375}) ₂	239.795	239.795	61.690	89.053	223.925	223.925	0.257	0.257
$Ti_3(C_{0.5}N_{0.5})_2$	242.524	242.524	64.379	89.073	225.435	225.435	0.265	0.265

Table S3 Stable adsorption sites and adsorption energies of K on the $Ti_3(C_{1-y}N_y)_2$ MXenes surfaces.

K site	Ti3(C0.875N0.125)2	Ti3(C0.75N0.25)2	Ti3(C0.625N0.375)	Ti3(C0.5N0.5)2
T1	-1.3337	-1.3686	-1.3747	-1.4668
T_2	-1.3385	-1.3267	-1.3237	-1.4120
T3	-1.3755		-1.3706	
T_4			-1.4314	
T ₅			-1.4271	
T_6	-1.3544	-1.3712	-1.3692	-1.4405
T_7	-1.3532		-1.4104	
T_8	-1.3955	-1.3900	-1.3897	-1.4602
T9			-1.4278	
H_1	-1.3544	-1.372	-1.3690	-1.4517
H_2	-1.3504	-1.3768	-1.3663	-1.4122
H_3	-1.3782		-1.3767	
H4			-1.4083	
H_5			-1.4060	
B_1	-1.3501	-1.3621	-1.3623	-1.4264
B_2	-1.3535	-1.3841	-1.3830	-1.4656
B ₃	-1.3899			-1.4427

Material	K concentration	а	b	% change in	% change in <i>b</i>	Average change in
				а		the
						<i>ab</i> plane
	$K_0Ti_3(C_{0.875}N_{0.125})_2$	12.335	12.335			
$Ti_2(C_{0.075}N_{0.105})$	$K_1Ti_3(C_{0.875}N_{0.125})_2$	12.351	12.354	0.130	0.154	0.142
113(C0.8751 0.125)2	$K_2Ti_3(C_{0.875}N_{0.125})_2$	12.358	12.363	0.186	0.227	0.207
	K3Ti3(C0.875N0.125)2	12.404	12.413	0.560	0.632	0.596
	$K_0Ti_3(C_{0.75}N_{0.25})_2$	12.297	12.297			
$Ti_{2}(C_{1}, \ldots, N_{1}, \ldots)$	$K_1Ti_3(C_{0.75}N_{0.25})_2$	12.323	12.323	0.211	0.211	0.211
1 13(C0.751N0.25)2	K ₂ Ti ₃ (C _{0.75} N _{0.25}) ₂	12.329	12.330	0.260	0.268	0.264
	K ₃ Ti ₃ (C _{0.75} N _{0.25}) ₂	12.344	12.340	0.382	0.350	0.366
	$K_0Ti_3(C_{0.625}N_{0.375})_2$	12.265	12.265			
$Ti_{C}(C, \dots, N, \dots)$	$K_1Ti_3(C_{0.625}N_{0.375})_2$	12.294	12.292	0.236	0.220	0.228
1 13(C0.6251 0.375)2	$K_2Ti_3(C_{0.625}N_{0.375})_2$	12.302	12.303	0.302	0.310	0.306
	$K_3Ti_3(C_{0.625}N_{0.375})_2$	12.324	12.329	0.481	0.522	0.502
	$K_0Ti_3(C_{0.5}N_{0.5})_2$	12.242	12.223			
$Ti_{2}(C \cdot N \cdot \cdot)$	$K_1Ti_3(C_{0.5}N_{0.5})_2$	12.277	12.262	0.286	0.319	0.303
$13(C_{0.51}N_{0.5})^2$	$K_2Ti_3(C_{0.5}N_{0.5})_2$	12.258	12.248	0.131	0.205	0.168
	K ₃ Ti ₃ (C _{0.5} N _{0.5}) ₂	12.322	12.308	0.653	0.695	0.674

Table S4 Variation of lattice constants (*a*, *b* in Å) for the four K adsorbed $Ti_3(C_{1-y}N_y)_2$ configurations as a function of K concentration.

Table S5 The average adsorption energy (E_{ad}) of Potassium at different concentrations on $Ti_3(C_{1-y}N_y)_2$ MXenes.

Material	K concentration (<i>x</i>)	E _{ad} (eV)
	$K_1Ti_3(C_{0.875}N_{0.125})_2$	-0.744
Ti ₃ (C _{0.875} N _{0.125}) ₂	$K_2Ti_3(C_{0.875}N_{0.125})_2$	-0.368
	$K_3Ti_3(C_{0.875}N_{0.125})_2$	-0.245
	$K_1 Ti_3 (C_{0.75} N_{0.25})_2$	-0.737
Ti ₃ (C _{0.75} N _{0.25}) ₂	$K_2Ti_3(C_{0.75}N_{0.25})_2$	-0.427
	$K_3Ti_3(C_{0.75}N_{0.25})_2$	-0.313
	$K_1Ti_3(C_{0.625}N_{0.375})_2$	-0.771
$Ti_3(C_{0.625}N_{0.375})_2$	$K_2Ti_3(C_{0.625}N_{0.375})_2$	-0.434
	$K_3Ti_3(C_{0.625}N_{0.375})_2$	-0.272
	$K_1 Ti_3 (C_{0.5} N_{0.5})_2$	-0.791
Ti ₃ (C _{0.5} N _{0.5}) ₂	$K_2Ti_3(C_{0.5}N_{0.5})_2$	-0.390
	$K_{3}Ti_{3}(C_{0.5}N_{0.5})_{2}$	-0.307

Fig. S1. Top and lateral views of the crystal structures for (a) $Ti_3(C_{0.875}N_{0.125})_2$, (b) $Ti_3(C_{0.75}N_{0.25})_2$, (c) $Ti_3(C_{0.625}N_{0.375})_2$, and (d) $Ti_3(C_{0.5}N_{0.5})_2$ MXenes.

Fig. S2. The Ab-initio Molecular Dynamics simulations at 300K and 5ps for (a) $Ti_3(C_{0.875}N_{0.125})_2$, (b) $Ti_3(C_{0.75}N_{0.25})_2$, (c) $Ti_3(C_{0.625}N_{0.375})_2$, and (d) $Ti_3(C_{0.5}N_{0.5})_2$ MXenes, respectively.

Fig. S3. The band structures of (a) $Ti_3(C_{0.875}N_{0.125})_2$, (b) $Ti_3(C_{0.75}N_{0.25})_2$, (c) $Ti_3(C_{0.625}N_{0.375})_2$, and (d) $Ti_3(C_{0.5}N_{0.5})_2$ MXenes.

Fig. S4. Top views of K adsorbed on (a) $Ti_3(C_{0.75}N_{0.25})_2$ surfaces, (b) $Ti_3(C_{0.5}N_{0.5})_2$ surfaces; Top and bottom views of K adsorbed on (c-d) $Ti_3(C_{0.625}N_{0.375})$ surfaces and (e-f) $Ti_3(C_{0.875}N_{0.125})_2$, respectively.

Fig. S5. The charge density difference of K adsorbed on (a) $Ti_3(C_{0.875}N_{0.125})_2$, (b) $Ti_3(C_{0.75}N_{0.25})_2$, (c) $Ti_3(C_{0.625}N_{0.375})_2$, and (d) $Ti_3(C_{0.5}N_{0.5})_2$ surfaces respectively. Red and green represent charge accumulation and consumption, respectively.

Fig. S6. The diffusion paths and the corresponding diffusion energy barriers of K-ion on (a) $Ti_3(C_{0.875}N_{0.125})_2$, (b) $Ti_3(C_{0.75}N_{0.25})_2$ and (c) $Ti_3(C_{0.625}N_{0.375})_2$ MXenes, respectively.

Fig. S7. Ab-initio Molecular Dynamics simulations of K₃Ti₃(C_{0.5}N_{0.5})₂ at 300 K over 5 ps.

Fig. S8. Voltage platform of (a) $Ti_3(C_{0.875}N_{0.125})_2$, (b) $Ti_3(C_{0.75}N_{0.25})_2$ and (c) $Ti_3(C_{0.625}N_{0.375})_2$ MXenes, respectively. *x* represents concentration.

Fig. S9. Side view of electron localization function (ELF) map of $K_3Ti_3(C_{0.5}N_{0.5})_2$.

Fig. S10. Side view of the $K_x Ti_3(C_{0.875}N_{0.125})_2$ structures with varying potassium concentrations (x = 1, 2, 3).

Fig. S11. Side view of the $K_x Ti_3(C_{0.75}N_{0.25})_2$ structures with varying potassium concentrations (x = 1, 2, 3).

Fig. S12. Side view of the $K_x Ti_3(C_{0.625}N_{0.375})_2$ structures with varying potassium concentrations (x = 1, 2, 3).

Fig. S13. Side view of the $K_x Ti_3(C_{0.5}N_{0.5})_2$ structures with varying potassium concentrations (x = 1, 2, 3).