Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supplementary Information

Active and robust La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O₃-based fuel electrode coated with insitu grown nanoparticle via electron conduction and oxygen exchange enhancements for solid oxide electrolysis cells

Bin Qian^a, Di Zhang^a, Pengkai Shan^a, Hui Ye^a, Yifeng Zheng^{a, b, *} a College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road(S), Nanjing, 211816, Jiangsu, China b Suzhou Laboratory, Suzhou 215000, China E-mail: zhengyifeng@njtech.edu.cn

Fig. S1 XRD patterns of LCN calcined at different temperatures in air for 2 h.

•

Fig. S2 Rietveld refinement of the as-prepared LCN sintered at 900 °C for 2 h.

Fig. S3 XPS spectra for 15wt% LCN/LSCCM sample.

s.

Sample	Binding energy (eV)				Relative concentration (%)			
	O _{lat}	O ⁻ /O ₂ ²⁻	OH-	O _H	O _{lat}	O ⁻ /O ₂ ²⁻	OH-	O_{H}
LSCCM	528.6	529.9	531.1	532.3	48.3	17	24.5	10.2
15wt% LCN/LSCCM	528.8	530.3	531.4	532.7	47.7	20.5	23.4	8.4

Table S2 Comparison of current densities for various SOECs during CO_2 electrolysis.

FUEL	ELECTROLYTE/AIR	FEEDING	TEMPERAT	APPLIED	CURRENT	REFEREN
ELECTRODE	ELECTRODE	GAS	URE(°C)	VOLTAGE (V)	DENSITY (A	CE
					CM-2)	
LCN/LSCCM-GDC	SSZ/LSM-GDC	CO ₂	800	1.6	0.69	This work
Pd-GDC/LSCM	YSZ/LSCF-YSZ	CO ₂ -CO(1:1)	850	1.5	0.35	1
LSCM-GDC/YSZ	YSZ/LSM-SSZ	CO ₂	800	1.6	0.28	2
CMO/ LSCM-GDC	YSZ/LSM-SSZ	CO ₂	800	1.8	0.52	3
CeO ₂ /LSCM-GDC	YSZ/LSM-YSZ	CO ₂	800	1.5	0.30	4
CeCo/LSCF-GDC	YSZ/LSM-YSZ	CO ₂ -CO(9:1)	800	1.5	0.65	5
LSFN-GDC	YSZ/LSFN-GDC	CO ₂	800	1.5	0.54	6
LSFV-GDC	YSZ/LSM-YSZ	CO ₂	800	1.6	0.62	7
HE-PBM-SDC	LSGM/HE-PBM-SDC	CO ₂	800	2.0	1.21	8
SF _{1.58} M-SDC	LSGM/LSM-SDC	CO ₂	800	1.8	1.16	9
PBSFG	LSGM/PBSFG	CO ₂	850	1.5	0.82	10
PBFN-GDC	YSZ/PBFN-GDC	CO ₂	800	2.0	0.84	11

References

- 1 S. Lee, S. H. Woo, T. H. Shin and J. T. Irvine, Chem. Eng. J., 2021, 420, 127706.
- 2 X. Zhang, Y. Song, F. Guan, Y. Zhou, H. Lv, Q. Liu, G. Wang and X. Bao, *J. Power Sources*, 2018, **400**, 104-113.
- 3 X. Zhang, Y. Song, F. Guan, Y. Zhou, H. Lv, G. Wang and X. Bao, J. Catal., 2018, 359, 8-16.
- 4 L. Zhang, S. Hu, W. Li, Z. Cao, H. Liu, X. Zhu and W. Yang, ACS Sustain. Chem. Eng., 2019, 7, 9629-9636.
- 5 Z. Huang, Z. Zhao, H. Qi, X. Wang, B. Tu and M. Cheng, J. Energy Chem., 2020, 40, 46-51.
- 6 Y. Tian, L. Zhang, L. Jia, X. Wang, J. Yang, B. Chi, J. Pu and J. Li, *Journal of CO2 Utilization*, 2019, **31**, 43-50.
- 7 Y. Zhou, Z. Zhou, Y. Song, X. Zhang, F. Guan, H. Lv, Q. Liu, S. Miao, G. Wang and X. Bao, *Nano Energy*, 2018, **50**, 43-51.
- 8 D. Zhang, Y. Wang, Y. Peng, Y. Luo, T. Liu, W. He, F. Chen and M. Ding, *Advanced Powder Materials*, 2023, **2**, 100129.
- 9 L. Chen, J. Xu, X. Wang and K. Xie, Int. J. Hydrogen Energ., 2020, 45, 11901-11907.
- 10 H. J. Lee, S. J. Son, S. K. Kim, S. Choi, M. K. Kim, T. H. Shin and J. H. Joo, *J. Power Sources*, 2024, **595**, 234032.
- 11 Y. Tian, C. Yang, Y. Wang, M. Xu, Y. Ling, J. Pu, F. Ciucci, J. T. S. Irvine and B. Chi, *J. Mater. Chem. A*, 2022, **10**, 16490-16496.