1	Supporting information
2	
3	A Liquid-like Quasi-solid Polymer Electrolyte for High-
4	performance Sodium Metal Batteries
5	
6 7 8	Vineeth Sasikumar Kala, ^{1,2,3} Chhail Bihari Soni, ¹ Sungjemmenla, ¹ Mahesh Chandra, ¹ Sanjaykumar C., ¹ Arihant Bhandari, ¹ Yusuke Yamauchi, ^{3,4,5} Minsu Han, ^{3,4*} and Vipin Kumar ^{1,2*}
9 10	¹ Department of Energy Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 110016
11 12	² University of Queensland- IIT Delhi Academy of Research (UQIDAR), Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India 110016
13 14	³ Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
15 16	⁴ Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
17 18	⁵ Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
19	
20	Corresponding author E-mail - <u>vkumar@dese.iitd.ac.in</u>
21	
22	
23	
24	
25	
26	

27 1. Experimental

28 **1.1. Materials**

Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP, average Mw 455,000),
poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPGPEG, average Mn 20,000), acetone, dimethyl carbonate (DMC, anhydrous, 99%), and ethylene
carbonate (EC, anhydrous, 99%) were purchased from Sigma-Aldrich. Fluoroethylene
carbonate (FEC) and sodium perchlorate (NaClO₄, ACS reagent, ≥98.0%) were procured from
TCI chemicals.

35 Precursors for the cathode, including Super-P (Thermo Scientific) as the conductive agent, 36 poly(vinylidene fluoride) (PVDF, average Mw ~534,000 by GPC) as the binder, and 1-methyl-37 2-pyrrolidinone (NMP, anhydrous, 99.5%) as the solvent, were obtained from Sigma-Aldrich. 38 Iron (II) sulfate heptahydrate and sodium ferrocyanide decahydrate were also obtained from 39 Sigma-Aldrich. All the materials were dried overnight at 60 °C in a hot air oven before use.

40

41 42

1.1.1. Preparation of PVDF-HFP/PEG-PPG-PEG blend membranes and their use in QSPE fabrication

43 A solution blending technique was employed to prepare PVDF-HFP and PEG-PPG-PEG blends in various weight ratios. The polymers were dissolved in acetone at 50 °C, taking care 44 45 to prevent solvent loss. After complete dissolution, the solution was heated for an additional 3 h to evaporate the acetone until a highly viscous state was reached. The viscous blend solution 46 was then cast onto aluminum foil using a slurry coater at a speed of 5 mm s⁻¹. To ensure 47 complete removal of residual solvent, the cast film was further dried at 60 °C for 3 h. The 48 resulting free-standing membrane was peeled off and cut into discs with a diameter of 18 µm 49 to match the separator dimensions. The membranes were labeled as pristine 100 (PVDF-HFP: 50 PEG-PPG-PEG = 100:0), blend 90-10 (90:10), blend 80-20 (80:20), blend 70-30 (70:30), and 51 blend 60-40 (60:40), according to the weight ratio of PVDF-HFP to PEG-PPG-PEG. QSPEs 52 were prepared by soaking the membranes in 1 M NaClO₄ in EC: DMC (1:1 by volume) with 53 FEC additive, inside an argon-filled glove box. 54

55

56 **1.1.2.** Preparation of cathodes for sodium metal battery applications

A Prussian blue (PB)-based cathode was employed in this study. PB was synthesized using a
modified version of previously reported methods ^{1,2}. The synthesized PB was characterized by
X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). The sample was
stored at 60 °C to prevent moisture absorption.

61 The cathode slurry was prepared using a weight ratio of PB powder: Super P: PVDF = 7:2:1. 62 The binder solution was made by dissolving PVDF in NMP at 60 °C for 1 h, followed by the 63 addition of PB and Super P. To ensure homogeneity, the mixture was stirred overnight at 60 64 °C. The resulting slurry was cast onto carbon-coated aluminum foil using an STC-TMH250 65 film tape casting machine and dried at 50 °C overnight. The cathode was then punched into 15 66 mm diameter disks and transferred to an argon-filled glove box (H₂O, O₂< 1 ppm) for further 67 battery assembly.

68 **1.2. Characterization**

69 **1.2.1.** Structural and physicochemical property analysis

Fourier-transform infrared spectroscopy (FTIR) analysis was performed using a Nicolet iS560 FTIR spectrometer to investigate the structural properties. Spectra were recorded in the range of 3500 to 400 cm⁻¹, with a resolution of 4 cm⁻¹. A background scan was performed before measurement to minimize errors, and all analyses were carried out in reflectance mode. Phase analysis of the blended polymer films was performed using XRD with a Ragaku Ultima IV diffractometer. Samples were pre-dried at 60 °C for 3 h before analysis, and the analysis was conducted at a scan rate of 5° min⁻¹.

Figure 277 Electrolyte uptake (%) was evaluated by soaking the polymer host membranes in excess liquid 78 electrolyte (LE; 1 M NaClO₄ in EC-DMC with FEC). The test also assessed the optimal 79 activation time. The electrolyte uptake (%) was calculated using the following equation:

Electrolyte uptake (%) =
$$\frac{(W_2 - W_1)}{W_1} \times 100$$

81 where W_2 represents the weight of the wet polymer sample after soaking, and W_1 is the dry 82 weight before soaking.

83 Porosity was analyzed using the n-butanol adsorption method ^{3,4}. The dry mass (W_d) and 84 volume (V) of the polymer host were measured, after which the samples were immersed in n-85 butanol for 1 h. Excess solvent was carefully removed, and the wet weight (W_w) was recorded. 86 To ensure accuracy, each measurement was repeated three times. ρ represents the density of n-87 butanol.

88 Porosity (%) was calculated using the following equation:

89 Porosity (%) =
$$\frac{(W_w - W_d)}{V \cdot \rho} \times 100$$

90

1.2.2. FESEM and elemental mapping analysis

91 Field-emission scanning electron microscopy (FESEM) was used to examine the morphology 92 of the polymer host and cycled sodium metal, along with elemental analysis via energy-93 dispersive X-ray spectroscopy (EDS). FESEM was performed in JEOL JSM-7800F, and EDS 94 analysis was conducted with Zeiss EVO 50 & EVO 18. Gold sputtering was applied to the non-95 conductive polymer samples before imaging.

96 **1.2.3.** Mechanical and thermal analysis

Mechanical properties were assessed via stress-strain measurements using Zwick Roell, 97 Germany static Universal Testing Machine (UTM Z010 (Static)) at a deformation rate of 5 mm 98 min⁻¹, in accordance with ASTM D882 standard. Thermal properties were characterized by 99 100 thermogravimetric analysis with derivative thermogravimetry (TGA-DTG) and differential 101 scanning calorimetry (DSC). DSC measurements were performed using a DSC2500 under a nitrogen atmosphere (40 mL min⁻¹ flow) in the temperature range of 25 to 250 °C, and the area 102 under the DSC curves was analyzed using TRIOS software. The heating rate was set to 20 °C 103 min⁻¹. TGA-DTG analysis was carried out using a Simultaneous Thermal Analyzer (SDT650), 104 under a nitrogen atmosphere at a heating rate of 10 °C min⁻¹, over the range of 25 to 600 °C. 105

106

1.2.4. Electrochemical analysis

A 2032-type coin cell symmetric cell was assembled in an argon-filled glove box to evaluate 107 ionic conductivity. The cell consisted of stainless steel (SS) blocking electrodes sandwiching 108 the QSPE, with thickness l (cm) and A (cm²). The ionic conductivity was measured using 109 electrochemical impedance spectroscopy (EIS) over a frequency range of 0.1 Hz to 100 kHz. 110 To examine the temperature dependence of conductivity, measurements were taken at 25 °C, 111 30 °C, 35 °C, 40 °C, 45 °C, 50 °C, and 60 °C. From the impedance spectra, the bulk resistance 112 (R_b) was extracted from the high-frequency intercept on the Z'-axis of the Nyquist plot. Ionic 113 conductivity (σ , mS cm⁻¹) was calculated using the equation: 114

$$\sigma = \frac{l}{R_b \cdot A}$$

116 Na⁺ transference number (t_{Na}^+) was determined by chronoamperometry on Na//QSPE//Na 117 symmetric cells using the Bruce-Vincent method. For comparison, the transference number of 118 the LE was also measured. The transference number was calculated as:

119
$$t_{Na}^{+} = \frac{I_{ss}(\Delta V - I_0 R_0)}{I_0(\Delta V - I_{ss} R_s)}$$

where I_0 is the initial current, I_{ss} is the steady-state current, ΔV is the applied voltage (10 mV), R₀ is the initial interfacial resistance, and R_s is the interfacial resistance after polarization. Impedance spectra were recorded from 0.1 Hz to 100 kHz.

123 The electrochemical stability window (ESW) of QSPEs was investigated using linear sweep 124 voltammetry (LSV) in Na//QSPE//SS cells over a potential range of -0.5 to 6 V at a scan rate 125 of 10 mV s⁻¹, using a Corrtest CS350 electrochemical workstation. Cyclic plating/stripping 126 performance was analyzed using Na//QSPE//Na symmetric cells under a current density of 1.0 127 mA cm⁻² and a capacity of 1.0 mAh cm⁻². Tafel analysis was also performed using the same 128 configuration, with LSV conducted from -0.3 V to 0.3 V at a scan rate of 5.0 mV s⁻¹.

129 For charge-discharge cycling and rate performance evaluations, full cells were constructed with sodium metal as the anode, QSPE as the electrolyte, and PB as the cathode. The voltage 130 window was set from 2.0 to 4.0 V, and the PB cathode had an active material loading of 1.0 131 mg cm⁻². Cells were rested for 4 h before testing and evaluated using a computer-controlled 132 133 NEWARE BTS 3000 battery tester. For post-mortem analysis, cycled cells were disassembled in the glove box, and electrode morphology was examined via SEM. Cyclic voltammetry (CV) 134 of Na//blend 70-30 QSPE//PB cells was conducted at a scan rate of 0.1 mV s⁻¹ within a 135 potential range of 2.0 to 4.0 V vs. Na/Na⁺. 136

137

138 2. Computational

139 2.1. Transport properties: diffusion coefficients, ionic conductivity, and transference 140 number

141 The total ionic conductivity of the complex electrolyte system can be calculated using Onsager
142 transport coefficients ⁵. In general, the conductivity is given by:

$$\sigma = e^2 \sum_i \sum_j L^{ij} z_i z_j \quad (1),$$

144 where *e* is the elementary charge, $z_{Na^+} = 1$, $z_{ClO_{4}} = -1$, and L^{ij} are the Onsager transport 145 coefficients, which are calculated as:

$$L^{ij} = \frac{N^i N^j}{2dV k_B T} \lim_{t \to \infty} \frac{d}{dt} S^{ij}(t) \quad (2).$$

147 where N^i and N^j are the number of ions of species *i* and *j*, d = 3 is the system dimensionality, *V* 148 is the volume, k_B is the Boltzmann's constant, *T* is the temperature, and $S^{ij}(t)$ is defined as:

149
$$S^{ij}(t) = \left\langle \Delta \vec{R}_{CM}^{\ i}(t) \cdot \Delta \vec{R}_{CM}^{\ j}(t) \right\rangle \quad (3)$$

150 The right-hand side denotes the statistical average of the dot product of the center-of-mass 151 displacements of ions of species i and j over an ensemble of trajectories. The calculated 152 $S^{Na^+ Na^+}$ and $S^{ClO_{\frac{1}{4}}ClO_{\frac{1}{4}}}$ are shown in **Figure S10**. After an initial kink, both curves exhibit a 153 linear increase with time.

154 The Onsager coefficients L^{ij} are extracted from the slope of $S^{ij}(t)$ with time as per Eq. 2. The 155 diffusion coefficient is closely related to the Onsager coefficient ⁶:

$$D^{i} = V k_{B} T \frac{L^{ii}}{N^{i}} \quad (4).$$

157 The calculated diffusion coefficient is found to be 2.57×10^{-6} cm² s⁻¹ for Na^+ and 3.41×10^{-7} 158 cm² s⁻¹ for ClO_{4}^- . The total conductivity also includes cross-correlation terms, where $i = Na^+$ 159 and $j = ClO_{4}^-$. By symmetry $S^{ij} = S^{ji}$ and $L^{ij} = L^{ji}$. Hence, the conductivity in Eq. 1 can be 160 simplified for the case of univalent electrolytes as:

161
$$\sigma = e^2 \left(L^{Na^+ Na^+} - 2L^{Na^+ Clo_4^-} + L^{Clo_4^- Clo_4^-} \right)$$
(5)

162 The calculated conductivity from Eq. 5 is found to be 2.10 mS cm⁻¹. Further, the transference
163 number can be calculated from Onsager coefficients as:

$$t_i = \frac{\sum_{j}^{L^{ij} z_i z_j}}{\sum_{m} \sum_{n} L^{mn} z_m z_n} \quad (6)$$

165 From Eq. 6 we compute a transference number of $t_{Na^+} = 0.9$, which is higher than the 166 experimentally measured value of $t_{Na^+} = 0.78$. The computational results depend upon the 167 chain length of the polymer (see ⁵). Conductivity and the transference numbers typically
168 decrease with an increase in the chain length. As the chain length that is considered in the
169 computational simulation is much smaller than in experiments, the computations are an upper
170 bound to the conductivity and transference number achievable in these systems.

Figure S1. Degree of crystallinity (X_{XRD} , %) of polymer blend membranes calculated from 176 XRD patterns.

Figure S2. Thickness dependence of room-temperature ionic conductivity and electrolyte 179 uptake in blend 70-30 membranes.

Figure S3. FESEM images at different magnifications for (a-c) pristine_100 and (d-f) 183 blend_70-30 membranes.

Figure S4. Elemental mapping of pristine_100 observed by FESEM-EDS.

196 Figure S6. EIS results at various temperatures for (a) pristine_100 and (b) blend_70-30 QSPEs.

198 Figure S7. Optical images of blend_70-30 membrane under different mechanical
199 deformations: (a) original, (b) bent, (c) folded, (d) recovered after bending and folding, and (e)
200 twisted.

Figure S9. Temperature and total energy profiles during the MD simulation of the blend_70-30 QSPE system.

215 Figure S11. Characterization of the synthesized PB: (a) XRD pattern and (b) FTIR spectrum.

Figure S12. Cyclic voltammetry curve of the PB cathode paired with a Na metal anode and
blend_70-30 QSPE, recorded at a scan rate of 0.1 mV s⁻¹ within a potential window of 2.0-4.0
V vs. Na/Na⁺.

- 222 Figure S13. Optical photographs of flame tests conducted at various time intervals for the L-
- 223 QSPE and a commercial Celgard separator soaked with LE.

Table S1. Comparison of the electrochemical performance of the present L-QSPE system withpreviously reported QSPEs used in SMBs.

Sl. No.	Electrolyte	Ionic conductivity	Cathode	Cycle
	composition	(S cm ⁻¹),		number, C
		Temperature (°C)		rate
1	PVDF-HFP/PEG-PPG-	1.01 × 10 ⁻³ , 25°C	Prussian blue	600, 0.5 C
	PEG NaClO ₄ -		(PB)	
	EC/DMC/FEC (Present			
	work)			
2	PVDF-HFP soaked in	$0.94 \times 10^{-4}, 30^{\circ}$ C	$Na_3V_2(PO_4)_3$	500, 0.5 C
	sodium-poly(tartaric			
	acid)borate/ PC (1:2, wt.			
	%) ⁷			
3	PETEA copolymer-	3.85 × 10 ⁻³ , 25°C	poly(S-	100, 0.1 C
	NaTFSI-PC/FEC ⁸		PETEA)-based	
			sulfur cathode	
4	PVDF-HFP-GO-	2.3 × 10 ⁻³ , 25°C	$Na_3V_2(PO_4)_3$	1100, 1 C
	NaClO ₄ -EC/PC ⁹			
5	Thermoplastic PU-	1.5 × 10 ⁻³ , 25°C	$Na_3V_2(PO_4)_3$	100, 1 C and 2
	NaClO ₄ - EC/DEC/FEC			С
	10			
6	PEO-Cu MOF- NaClO ₄ -	3.48 × 10⁻³, 25°C	NaCrO ₂	800, 1 C
	EC/DEC/FEC ¹¹			
7	Poly EPTA- NaPF ₆₋	5.33 × 10 ⁻³ , 25°C	Graphite	1000, 100 mA
	PC:EMC:FEC ¹²			g-1
8	(P(MVE-alt-MA))-	2.2 × 10 ⁻⁴ , 25°C	$Na_3V_2(PO_4)_3$	1000, 1 C
	bacterial cellulose (BC)-			
	triethyl phosphate-			
	NaClO ₄ -VC ¹³			
9	PVDF-HFP- β/β'' -	7.13 × 10 ⁻⁴ , 25°C	Na ₃ V ₂ (PO ₄) ₃	1000, 1 C
	Al ₂ O ₃ - NaClO ₄ -			

		EC/DEC/FEC ¹⁴				
227	4.	References				
228	1	Y. Qiao, G. Wei, J. Cui, M. Zhang, X. Cheng, D. He, S. Li and Y. Liu, Chem. Commun.,				
229		2019, 55 , 549–552.				
230	2	S. K. Vineeth, C. B. Soni, Sungjemmenla, C. Sanjaykumar, Y. Yamauchi, M. Han and				
231		V. Kumar, J. Energy Storage, 2023, 73, 108780.				
232	3	D. Deb, P. Bose and S. Bhattacharya, Ionics (Kiel)., 2021, 27, 123-136.				
233	4	W. Ren, Y. Huang, X. Xu, B. Liu, S. Li, C. Luo, X. Li, M. Wang and H. Cao, J. Mater.				
234		<i>Sci.</i> , 2020, 55 , 12249–12263.				
235	5	K. D. Fong, J. Self, B. D. McCloskey and K. A. Persson, Macromolecules, 2020, 53,				
236		9503–9512.				
237	6	N. M. Vargas-Barbosa and B. Roling, ChemElectroChem, 2020, 7, 367–385.				
238	7	L. Yang, Y. Jiang, X. Liang, Y. Lei, T. Yuan, H. Lu, Z. Liu, Y. Cao and J. Feng, ACS				
239		Appl. Energy Mater., 2020, 3, 10053–10060.				
240	8	D. Zhou, Y. Chen, B. Li, H. Fan, F. Cheng, D. Shanmukaraj, T. Rojo, M. Armand and G.				
241		Wang, Angew. Chemie Int. Ed., 2018, 57, 10168–10172.				
242	9	C. Luo, T. Shen, H. Ji, D. Huang, J. Liu, B. Ke, Y. Wu, Y. Chen and C. Yan, Small, 2020,				
243		16 , 1906208.				
244	10	M. Park, H. Woo, J. Heo, J. Kim, R. Thangavel, Y. Lee and D. Kim, ChemSusChem,				
245		2019, 12 , 4645–4654.				
246	11	Z. Zhang, Y. Huang, C. Li and X. Li, ACS Appl. Mater. Interfaces, 2021, 13, 37262-				
247		37272.				
248	12	X. Xu, K. Lin, D. Zhou, Q. Liu, X. Qin, S. Wang, S. He, F. Kang, B. Li and G. Wang,				
249		<i>Chem</i> , 2020, 6 , 902–918.				
250	13	J. Yang, M. Zhang, Z. Chen, X. Du, S. Huang, B. Tang, T. Dong, H. Wu, Z. Yu, J. Zhang				
251		and G. Cui, Nano Res., 2019, 12, 2230–2237.				
252	14	D. Lei, Y. B. He, H. Huang, Y. Yuan, G. Zhong, Q. Zhao, X. Hao, D. Zhang, C. Lai, S.				
253		Zhang, J. Ma, Y. Wei, Q. Yu, W. Lv, Y. Yu, B. Li, Q. H. Yang, Y. Yang, J. Lu and F.				

254 Kang, Nat. Commun., 2019, **10**, 1–11.