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1. Supplementary methods



SEM images were carried out by a Regulus 8100 instrument. TEM, HR-TEM, and
electron diffraction were examined by JEOL JEM-F200 electron microscope. XRD
curves were collected by a Smartlab instrument with Cu Ko radiation. AFM images
were acquired on Bruker Dimension Icon atomic force microscopy. The GIWAXS data
were obtained at 1WI1A Diffuse X-ray Scattering Station, Beijing Synchrotron
Radiation Facility (BSRF-1WI1A). Zeta potentials were taken from a Nano ZS
instrument with a 4 mW He-Ne laser. FT-IR patterns were taken from Thermo
Scientific Nicolet iIS50. XPS was performed on an ESCALAB Xi+ instrument with an
Al Ka radiation source. WACs were measured by POWEREACH JC2000D2M static
contact angle goniometer. The water states in COF nanochannels were investigated by
DSC (Germany's Netzsch, 200 F3). Quartz crystal microbalance (QCM, Q-sense El,
Biolin Scientific) was used to record the water-capture ability which was calculated by

the modified Sauerbrey Equation (1):

\Pqtq

Am =- Af >
2f% (1)

Where Am is the mass change on the sensor surface (ug cm2); Af is the frequency
change (Hz); f0 is the resonant frequency of the sensor (Hz); pq and pq are intrinsic

parameters of quartz crystal: density (ug cm™3) and shear modulus (ug cm™! s72).

2. Supplementary Figures
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Figure S1. Proposed mechanism of dioxin linkage formation catalyzed by traditional catalyst.
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Figure S2. FT-IR spectra of DETA-COF, TETA-COF, TEPA-COF, and TEA-COF. Noted that

compared with TEA-COF, both DETA-COF, TETA-COF, and TEPA-COF exhibit new peaks
at 1620 cm! attributed to C=N.
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Figure S3. FT-IR spectra of DETA, TETA, and TEPA monomer.

Figure S4. SEM images TETA-COF nanosheets.



Figure S5. AFM images of TETA-COF nanosheets and the respective height profiles along the
marked black line.

Figure S6. Tyndal effect of TETA-COF nanosheets aqueous dispersion.
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Figure S7. Photographic images and corresponding SEM images of the X-COF powders
synthesized from the solvothermal method.
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Figure S8. PXRD patterns of X-COF bulk powders synthesized by solvothermal synthesis.
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Figure S9. FT-IR spectra of X-COF powders synthesized by solvothermal synthesis.

Figure S10. Photographic image of the suspension of oligomers dissolved in DMF.
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Figure S11. Zeta potential of DETA-COF, TETA-COF, and TEPA-COF nanosheet aqueous
dispersion.
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Figure S12. Time-dependent TEM images during the formation of TETA-COF nanosheets.
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Figure S13. High-resolution XPS spectra of deconvoluted C 1s of heterogenous a) DETA-COF
and b) TEPA-COF.
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Figure S14. Solid-state 13C NMR spectrum of DETA-COF and TEPA-COF.
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Figure S15. FT-IR spectra of the TETA-COF, DETA-COF, and TEPA-COF (a) before and
(b) after the TFPN replacement.

Figure S16. AFM images of the first type of amine catalyst. a) DETA-COF nanosheets. b)
TEPA-COF nanosheets.



Figure S17. Comparison of Tyndall effect of TEA-COF, DETA-COF, TETA-COF, and TEPA-
COF nanosheets aqueous dispersion. The great Tyndall effect indicates processability.
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Figure S18. Photograph of various types of X-COF membranes.

TEA-COF membrane

—_
= DET A-COF membrane
H |
.g TEYA-COF membrane i}
=
P
= | TERA-COF membrane
[l
PTFE subztrate
s 10 15 20 25 30

2 Theta (degree)

Figure S19. XRD patterns of the DETA-COF, TETA-COF, TEPA-COF, TEA-COF
membranes, and PTFE substrate.



Figure S20. Surface SEM images of a) DETA-COF and b) TEPA-COF membrane.

Figure S21. Cross-sectional SEM images of the TETA-COF, DETA-COF, and TEPA-COF
membranes.
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Figure S22. WCA test of TEA-COF, DETA-COF, TETA-COF, and TEPA-COF membrane.

Figure S23. Surface and cross-sectional SEM images of pure COF membrane.
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Figure S24. Long-term operational stability of TETA-COF membrane.
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Figure S25. The desalination performance of the TETA-COF membrane when testing 3.5 wt%
NaCl aqueous solution with 100 ppm NaClO.

Table S1. C/N ratio and addition contents analysis of DETA-COF, TETA-COF, and TEPA-
COF nanosheets.

Sample C/N ratio Amine catalyst addition (%)
pure COF 6.00 0
DETA-COF 4.80 26.36
TETA-COF 5.20 27.32
TEPA-COF 4.85 26.24




Table S2. Summary of desalination performance of representative membranes reported in the

literature.
L. Feed Salt
Desalination Water flux L.
Membranes . temperature - rejection Ref.
technique (kg m~* h')
(°O) (%)
POSS@GO PV 80 112.7 99.98 1
PVA/PAN nanofiber 5
. PV 55 ~126.2 99.6
composite
hydrophili
YETophIie PV 80 1 99 3
nanofibrous webs
COFp-E18@cPVDF VMD 55 ~88.3 99.9 4
Graphdiyne VMD 50 ~130 99.9 3
Photothermal
omniphobic VMD 30 2.94 >98 6
membranes
TETA-COF PV 50 230.1 99.97 This work

P.S.: The membrane-based desalination technique includes pervaporation (PV) and

vacuum membrane distillation (VMD).
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