Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

for

Electrodeposited CoP₂ on CO₂-Laser-Modified Graphite Felt: A Robust Electrocatalyst for Nitrite Reduction to Ammonia

Chae Eun Park ^{a,†}, Rahul Kerkar ^{a,†}, Deepak Arumugam ^{b,†}, Jayaraman Theerthagiri ^a, Shankar Ramasamy ^b, Myong Yong Choi ^{a,c*}

^a Department of Chemistry (BK21 FOUR), Research Institute of Advanced Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea

^b Molecular Simulation Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India

[°]Core-Facility Center for Photochemistry & Nanomaterials, Gyeongsang National University, Jinju 52828, Republic of Korea

*Correspondence Email address: mychoi@gnu.ac.kr (M.Y. Choi)

[†] These authors contributed equally to this work

Characterization

A range of analytical techniques was employed to evaluate the crystallinity, morphology, elemental composition, chemical bonding, and analyte quantification of the synthesized electrocatalysts. The crystallinity and phase composition were analyzed using X-ray diffraction (XRD) with a Bruker D8 Advance A25 diffractometer equipped with a CuKa radiation source $(\lambda = 1.54 \text{ Å})$. The diffraction patterns were recorded at a scan rate of 0.05° s⁻¹ over a 2 θ range of $20^{\circ} - 60^{\circ}$, ensuring high-resolution phase identification. Raman spectroscopy was performed using a Thermo Scientific DXR2xi Raman imaging microscope to elucidate the structural characteristics of the catalysts. The morphology and elemental distribution were examined via field emission scanning electron microscopy (FESEM) on a TESCAN S8000 instrument, equipped with an Ultim Max energy-dispersive X-ray spectroscopy (EDS) detector (Oxford Instruments). X-ray photoelectron spectroscopy (XPS) was conducted using a Thermo Scientific Nexsa G2 instrument to determine the chemical states and bonding environment of the elements within the synthesized material. The quantification of ammonium ions (NH_4^+) was performed spectrophotometrically using a Thermo Scientific Evolution 600 UV-Vis spectrophotometer, with measurements recorded in the visible range of 400-800 nm. Additionally, ¹H NMR spectroscopy was employed for NH₄⁺ quantification using a Bruker Avance-III 300 NMR spectrometer operating at 300 MHz.

Electrocatalytic Activity Study

The catalytic performance of the synthesized electrocatalysts for the nitrite reduction reaction (NO₂RR) was evaluated in a two-compartment, three-electrode electrochemical system using a CHI708E electrochemical workstation (CHI Instruments, USA). The reaction was conducted in 0.1 M KNO₂ solution, with a Nafion membrane serving as both a proton-exchange membrane and an electrolyte separator. Prior to use, the Nafion membrane was pretreated by

sequential immersion in 3% H₂O₂ for 1 h, deionized water for 2 h, and 0.5 M H₂SO₄ for 1 h at 80 °C. Graphite felt modified with the electrocatalyst was employed as the working electrode, a Hg/HgO electrode was used as the reference electrode, and a graphite rod served as the counter electrode. The measured potentials were converted to the reversible hydrogen electrode (RHE) scale using the standard equation: $E_{RHE} = E_{Hg/HgO} + (0.098 + 0.0591 \times pH)$. Linear sweep voltammetry (LSV) was conducted to assess NO₂RR activity over an anodic potential range of -0.6 to -1.9 V vs. Hg/HgO, at a scan rate of 5 mV s⁻¹. The Tafel slope was determined using the equation: $\eta = b \times \log (j/j_0)$, where η represents the overpotential, b is the Tafel slope, j is the current density, and j₀ is the exchange current density. Bulk NO₂RR analysis was performed at a constant potential for 1 h in 45 mL of catholyte, with continuous stirring at 300 rpm to ensure homogeneous mixing.

Quantification of NH₄⁺

Colorimetric indophenol blue method

The concentration of NH₄⁺ generated during NO₂RR was determined using the colorimetric indophenol blue method, followed by UV-Vis spectrophotometric analysis. Reaction aliquots were collected at 1 h intervals, and 2 mL of the collected sample was mixed with 2 mL of 1.0 M NaOH containing 5 wt% sodium citrate (C₆H₅Na₃O₇·2H₂O) and 5 wt% salicylic acid (C₇H₆O₃). Subsequently, 2 mL of 0.05 M NaCl and 0.2 mL of 1 wt% sodium nitroferricyanide dihydrate (C₅H₄FeN₆Na₂O₃·2H₂O) were added. The solution was allowed to stand for 2 hrs to develop the characteristic indophenol blue coloration. The absorbance was measured at a wavelength of 655 nm (λ_{max}), and the NH₄⁺ concentration was quantified using a calibration curve constructed from standard NH₄Cl solutions with concentrations of 0, 10, 50, 100, and 200 ppm. This method provided a reliable estimation of NH₄⁺ formation during NO₂RR.

¹H Nuclear Magnetic Resonance (¹H NMR) Studies

¹H NMR Spectroscopy for NH₄⁺ Quantification¹H NMR spectroscopy was employed to confirm NH₄⁺ formation and to determine its concentration based on peak area integration. For NMR analysis,1 mL of the reaction solution collected after 1 h of NO₂RR was mixed with 0.5 mL of deuterium oxide (D₂O). The pH of the solution was adjusted to ~2 using 0.5 M H₂SO₄ to optimize NH₄⁺ detection conditions. The ¹H NMR spectra exhibited three distinct peaks at δ = 7.25, 6.95, and 6.65 ppm, corresponding to NH₄⁺ ions. The unknown NH₄⁺ concentration was determined by referencing a calibration curve generated from standard NH₄Cl solutions with concentrations of 1, 5, 10, and 20 mM (equivalent to ~18, 90, 180, and 360 ppm, respectively). This analytical approach effectively confirmed and quantified NH₄⁺ formation during the catalytic NO₂RR process.

Computational Details

First-principles density functional theory (DFT) calculations were performed to investigate the NO₂RR performance of the CoP₂/GO-GF structure using the Vienna *Ab initio* Simulation Package (VASP)^{1, 2}. The spin-polarized Perdew–Burke–Ernzerhof (PBE) functional, based on the generalized gradient approximation (GGA), was employed to describe the electron–ion interactions. The electron cloud was modeled using a plane-wave basis set in conjunction with projector augmented wave (PAW) pseudopotentials ^{3, 4}. To account for weak interactions, Grimme's dispersion correction (D3) with Becke–Johnson damping was incorporated⁵. The convergence criteria for the electronic self-consistent field (SCF) steps and the interatomic forces were set to 10^{-6} eV and 0.01 eV/Å, respectively, for all systems. The Brillouin zone was sampled using the Monkhorst–Pack scheme with a $5 \times 5 \times 1$ *k*-mesh and Gaussian smearing. The plane-wave expansion was confined within a cutoff energy of 520 eV ⁶. For density of states (DOS) calculations, a denser $11 \times 11 \times 1$ *k*-point grid was employed using the tetrahedron method with Blöchl corrections ⁷. To prevent interactions with periodic images a vacuum separation of 30 Å was maintained in the z-direction. Additional details regarding electrochemical calculations are provided in the Supporting Information.

Computational details

1. Cohesive energy $({}^{E_{C}})$

The cohesive energy of the heterostructure (E_{coh}) is calculated using the relation,

$$E_{C} = \frac{E_{CoP_{2}/GO} - (N_{C}E_{C} + N_{Co}E_{Co} + N_{P}E_{P} + N_{O}E_{O} + N_{H}E_{H})}{N}$$

Where, ${}^{E}{}_{CoP_2/GO}$ is the total energy of CoP₂/GO structure obtained from the ground states structure, ${}^{E}{}_{C}{}^{E}{}_{Co}{}^{E}{}_{P}$, ${}^{E}{}_{O}$, and ${}^{E}{}_{H}$ are the energy of the individual atoms found from their stable structure and ${}^{N}{}_{C}{}^{N}{}_{Co'}{}^{N}{}_{P}{}^{N}{}_{O}$, and ${}^{N}{}_{H}$ is the number of corresponding atoms that are present in the CoP₂/GO structure and ${}^{N}{}_{i}$ is the total number of atoms.

2. Formation energy $({}^{E_{F}})$

The formation energy (E_F) of the CoP₂/GO structure is calculated from the following relation,

$$E_f = E_{CoP_2/GO} - (E_{CoP_2} + E_{GO})$$

Where, $E_{CoP_2/GO}$ is the total energy of CoP₂/GO structure, E_{CoP_2} and E_{GO} are the total energy of the individual CoP₂ and GO structures.

3. Elementary steps of NO₂RR

To study the electrochemical performance, the computational hydrogen electrode (CHE) model proposed Nørskov et al., is adapted ⁸.

$$H_{(aq)}^{+} + e^{-} \rightleftharpoons \frac{1}{2}H_2$$

For the NO₂RR, the reaction occurs via $9e^{-}$ pathway as given below 9, 10,

$$NO_{2}^{-} + 8H^{+} + 9e^{-} \rightarrow NH_{3} + H_{2}O^{-}$$

The elementary steps for the reaction are given as,

$$NO_{2}^{-} + * + e^{-} \rightarrow NO_{2}^{*}$$
(S1)

$$NO_2^* + H^+ + e^- \to NO_2 H^*$$
 (S2)

$$NO_2H^* + H^+ + e^- \rightarrow NO^* + H_2O$$
 (S3)

$$NO^* + H^+ + e^- \rightarrow NOH^*$$
(S4)

$$NOH^* + H^+ + e^- \rightarrow NHOH^*$$
 (S5)

$$NHOH^* + H^+ + e^- \rightarrow NH^* + H_2O$$
 (S6)

$$NOH^* + H^+ + e^- \rightarrow N^* + H_2O$$
 (S7)

$$N^* + H^+ + e^- \rightarrow NH^* \tag{S8}$$

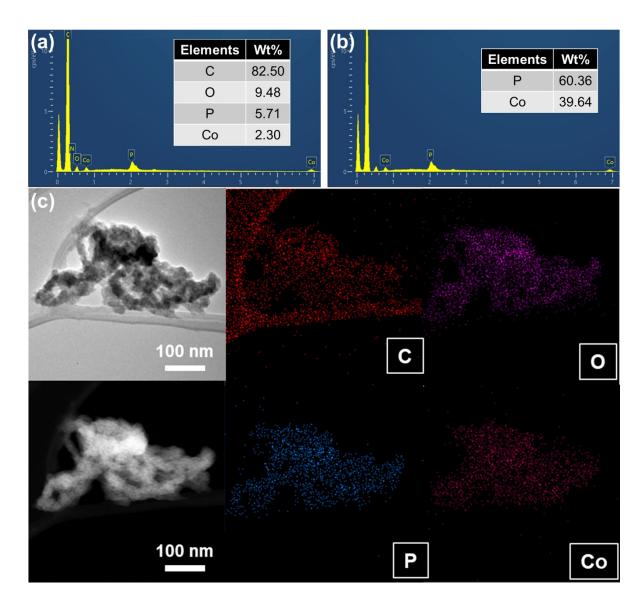
$$NH^* + H^+ + e^- \rightarrow NH_2^* \tag{S9}$$

$$NH_2^* + H^+ + e^- \rightarrow NH_3^*$$
 (S10)

$$NH_{3}^{*} + H^{+} + e^{-} \rightarrow NH_{4}^{*}$$
 (S11)

The Gibbs free energy for the adsorption of the intermediates (NO₂*, NHO₂H*, NOH*, NHOH*, N*, NH*, NH₂*, NH₃*, and NH₄*) and for the reaction steps (S1 – S11) determines the catalytic property materials, which is calculated as,

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S$$


where ΔE is the adsorption energy of the intermediates, ΔZPE and $T\Delta S$ are the change in zeropoint energy and entropy at 298.15 K.

4. Faradaic efficiency (FE)

The relation for the Faradaic efficiency (FE) of the NO_2RR is considered from the previous literatures as ^{10, 11},

$$FE = \left[\frac{1}{1 + exp^{[n]}(\frac{-\Delta G}{K_B T})}\right] \times 100$$

Where, ΔG is the maximum free energy change observed for the reaction steps (S1 – S11), K_B is the Boltzmann constant (8.617 × 10⁻⁵ eV K⁻¹), *T* is the temperature (298.15 K).

Figure S1. FESEM-EDS spectra of the as-synthesized $CoP_2/GO-GF$, showing the presence of (a) C, O, P, and Co elements, and (b) P and Co elements without C and O; and (c) TEM studies on $CoP_2/GO-GF$.

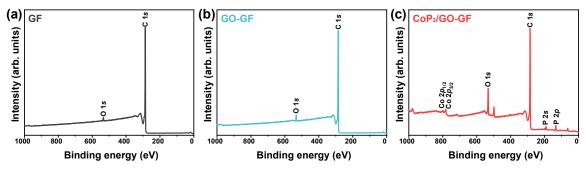


Figure S2. XPS survey spectra of (a) GF, (b) GO-GF, and (c) CoP₂/GO-GF.

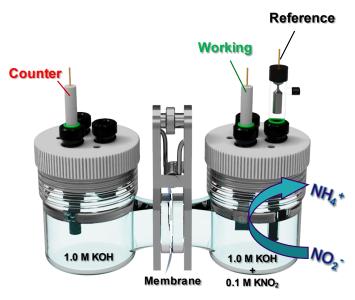


Figure S3. Schematic representation of the two-electrode cell system for NO₂RR.

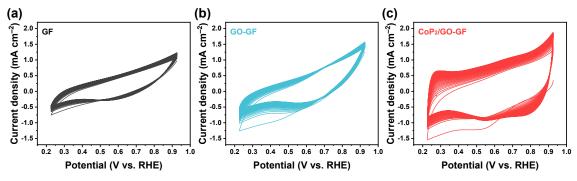
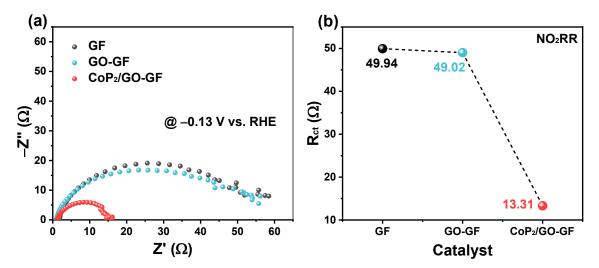



Figure S4. Cyclic voltammograms of (a) GF, (b) GO-GF, and (c) CoP₂/GO-GF.

Figure S5. Electrochemical impedance spectroscopy (EIS) analysis of bare GF, GO-GF, and CoP₂/GO-GF at -0.13 V vs. RHE during NO₂RR: (a) Nyquist plots and (b) corresponding charge transfer resistance (R_{ct}) values.

Figure S6. Bode plots of bare GF, GO-GF, and CoP_2/GO -GF at -0.13 V vs. RHE during the NO₂RR.

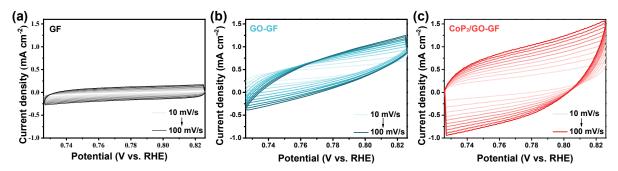


Figure S7. CV curves of (a) bare GF, (b) GO-GF, and (c) $CoP_2/$ GO-GF samples measured in the non-Faradic portion in 1.0 M KOH + 0.5 M KNO₂ at different scan rates from 10-100 mV s^{-1} .

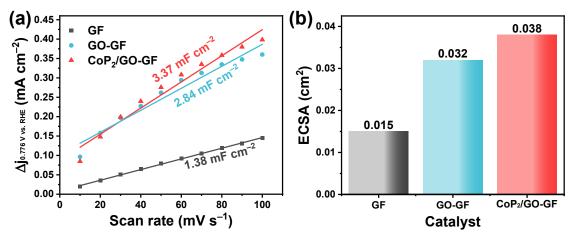
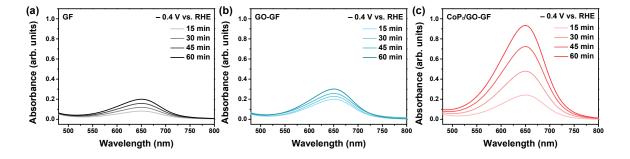
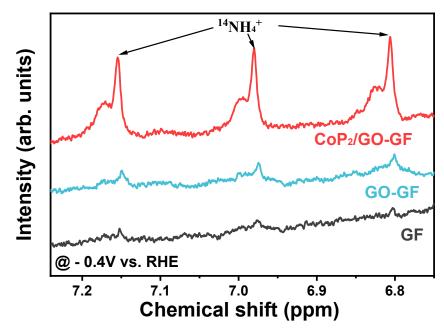
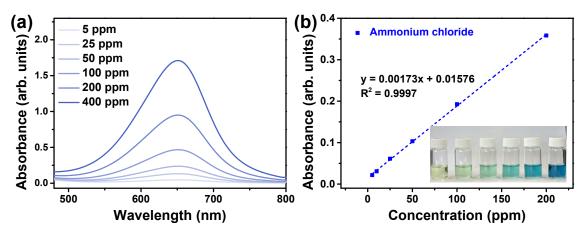
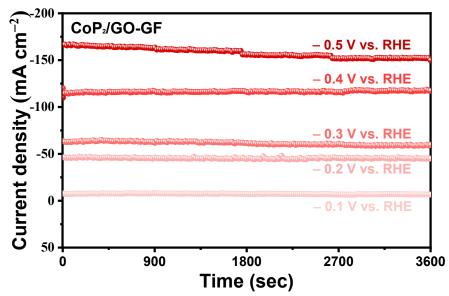
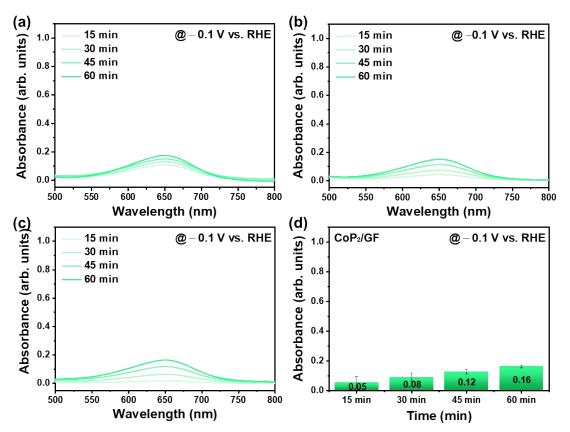
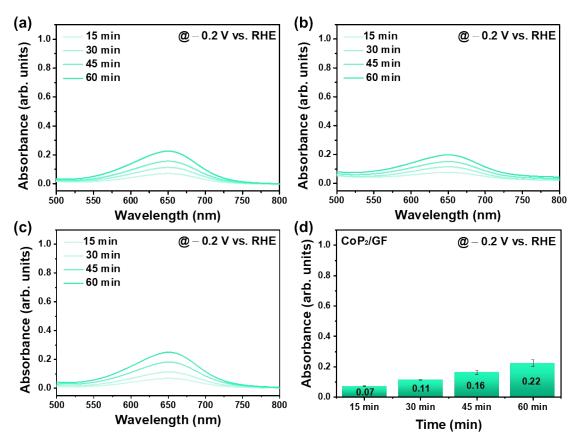




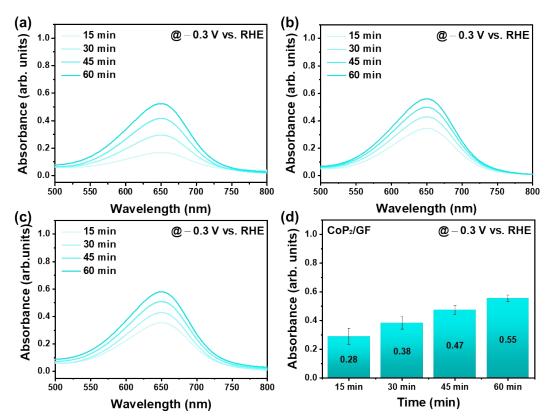
Figure S8. Double-layer capacitance (C_{dl}) and electrochemical surface area (ESCA) of bare GF, GO-GF, and CoP₂/GO-GF studied during the NO₂RR .

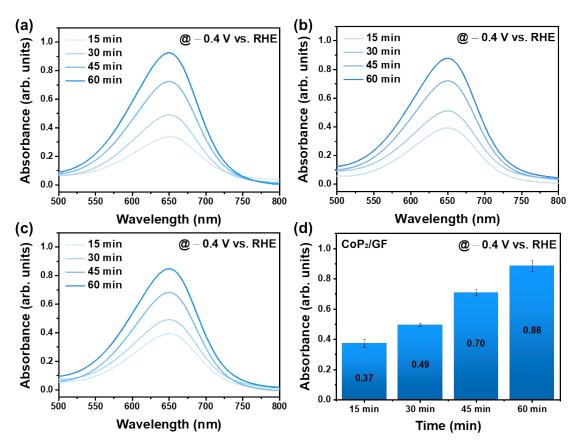
Figure S9. UV-Vis absorption spectra of (a) bare GF, (b) GO-GF, and (c) CoP₂/GO-GF samples measured at -0.4 V vs. RHE.

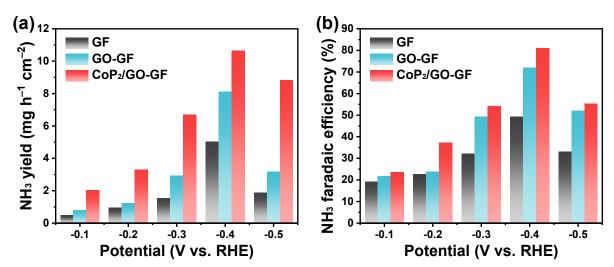
Figure S10. ¹H NMR spectra of the catholyte solutions after 60 minutes of NO₂RR over bare GF, GO-GF, and CoP₂/GO-GF at -0.4 V vs. RHE.

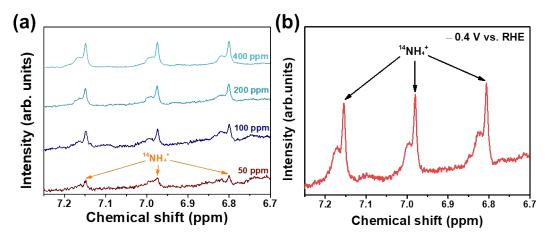




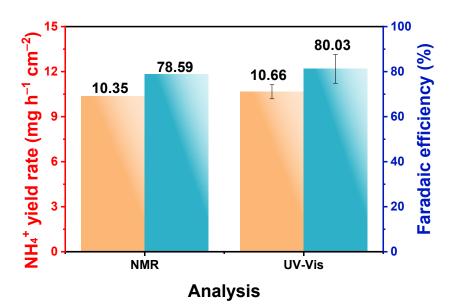

Figure S11. Calibration curves for ammonium ion (NH_4^+) determination: (a) absorbance vs. concentration and (b) linear regression analysis of NH_4Cl standard solutions (5, 10, 25, 50, 100, and 200 ppm).


Figure S12. Bulk electrolysis of NO₂RR over CoP₂/GO-GF samples measured in at potential from 0 to -0.4 V vs. RHE.


Figure S13. UV-Vis absorption spectra of NH₄⁺ produced from CoP₂/GO-GF samples: (a-c) representative spectra and (d) average absorbance values calculated from three repetitive studies at -0.1 V vs. RHE.


Figure S14. UV-Vis absorption spectra of NH₄⁺ produced from CoP₂/GO-GF samples: (a-c) representative spectra and (d) average absorbance values calculated from three repetitive studies at -0.2 V vs. RHE.


Figure S15. UV-Vis absorption spectra of NH₄⁺ produced from CoP₂/GO-GF samples: (a-c) representative spectra and (d) average absorbance values calculated from three repetitive studies at -0.3 V vs. RHE.


Figure S16. UV-Vis absorption spectra of NH₄⁺ produced from CoP₂/GO-GF samples: (a-c) representative spectra and (d) average absorbance values calculated from three repetitive studies at -0.4 V vs. RHE.

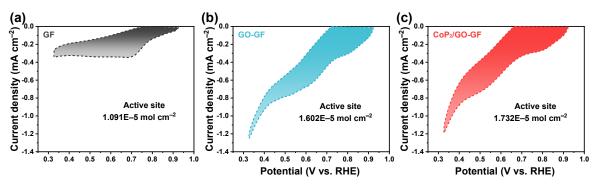

Figure S17. Electrochemical NH₄⁺ production over GF, GO-GF, and CoP₂/GO-GF: (a) NH₄⁺ yield and (b) NH₄⁺ faradaic efficiency calculated from UV-Vis absorption.

Figure S18. ¹H NMR of NH₄⁺: (a) calibration spectra for N- NH₄⁺ using NH₄Cl standard solutions (50-400 ppm) and (b) ¹H NMR spectrum of the catholyte solution after 60 minutes of NO₂RR over CoP₂/GO-GF at -0.4 V vs. RHE.

Figure S19. Comparative quantification of N-NH₄⁺ by UV-Vis and ¹H NMR spectroscopy: NH₄⁺ yield and faradaic efficiency for CoP₂/GO-GF.

Figure S20. CV curves for (a) bare GF, (b) CO₂ laser GF, and (C) CoP₂/GO-GF, with corresponding active site density values calculated from the CV curves.

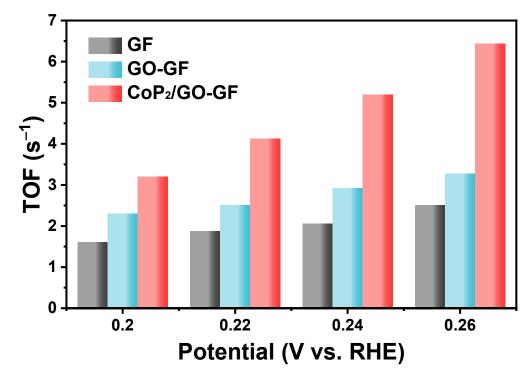
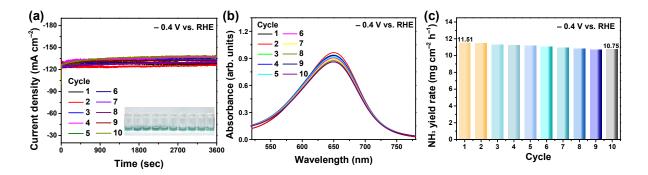
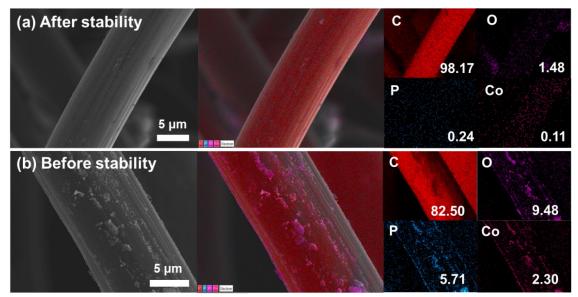




Figure S21. TOF graphs for (a) bare GF, (b) CO_2 laser GF, and (C) CoP_2/GO -GF from NO_2RR .

Figure S22. Electrocatalytic stability and performance of CoP₂/GO-GF for NO₂RR: (a) Electrocatalytic stability over 10 consecutive cycles at -0.4 V vs. RHE, with refilling the fresh electrolyte at the start of each cycle, (b) absorption spectra recorded after every 1 hr, and (c) NH₃ yield produced during 10 consecutive cycles of NO₂RR.

Figure S23. FESEM images and corresponding colour maps of CoP₂/GO-GF: (a) after the NO₂RR stability study, and (b) before the NO₂RR stability study

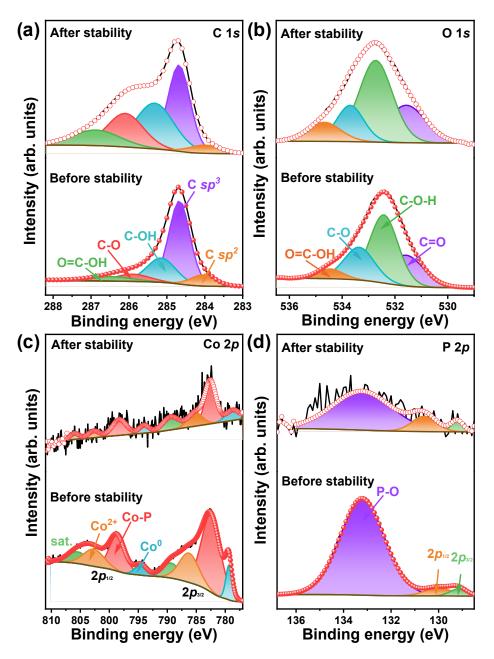


Figure S24. XPS spectra of CoP₂/GO-GF after NO₂RR stability study.

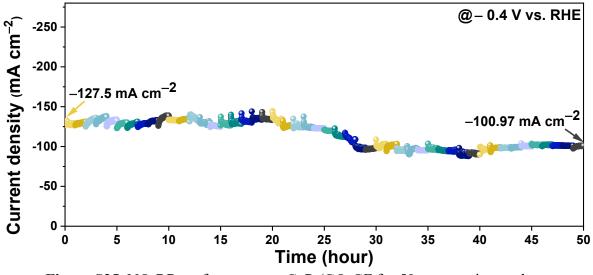
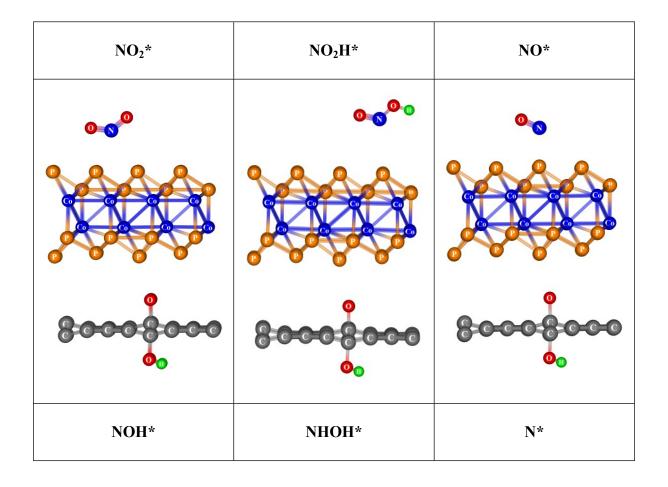
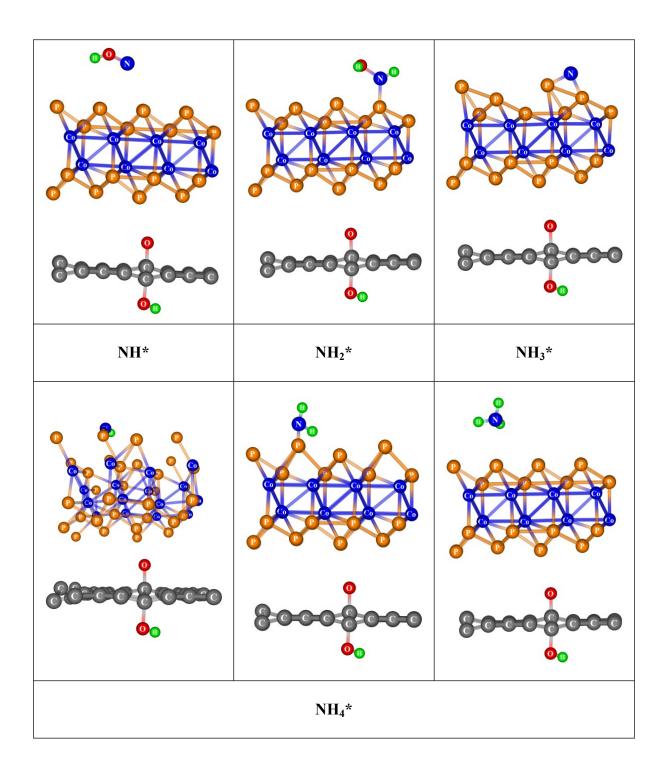
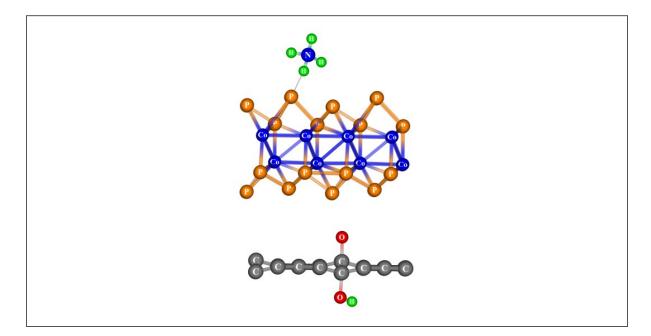





Figure S25. NO₂RR performance on CoP₂/GO-GF for 50 consecutive cycles.

Figure S26. Optimized images of NO₂*, NHO₂H*, NOH*, NHOH*, N*, NH*, NH₂*, NH₃*, and NH₄* intermediates adsorbed structures.

Catalysts	NH ₃ yield	Faradaic	Reference	
	efficiency			
Ni@MDC	6.3 mg h ⁻¹	65.4%	12	
CoP-CNS	8.47mmol	88.6%	13	
AgNDs	$0.6 \text{ mg } h^{-1}$	10.1%	14	
O-Cu–PTCDA	0.43 mg h ⁻¹	85.9%	15	
PCN-NV4	$0.00809 \text{ mg h}^{-1}$	11.59%	16	
CoP nanoarray/TM	1.4 mg h^{-1}	91.5%	17	
Co-10/CNT@CP	19.3 mg h ⁻¹	95%	18	
ВСР	0.28 mg h ⁻¹	54.5%	19	
Ru SA-NC	12.8 mg h ⁻¹	97.8%	20	

CoP ₂ /GO-GF	10.3 mg h ⁻¹	~78%	This work
Fe-SAC	$20\ mg\ h^{-1}$	75%	29
Cu ₃ P NA/CF	~95 µmol h ⁻¹	~91%	28
Ti ₃ C ₂ T _x	0.65 mg h^{-1}	75%	27
CoB@TiO ₂ /TP	233.1 μmol h ⁻¹	95.2%	26
	(30min)		
MoFe protein	234 nmol	~100%	25
CoP NA/TM	$2.3 \text{ mg } h^{-1}$	90%	24
Ni-NSA-V _{Ni}	$4.0 \text{ mg } \text{h}^{-1}$	88.9%	23
FeSA–N–C	0.00748 mgh^{-1}	56.55%	22
Fe-PPy SACs	2.75 mg h^{-1}	~100%	21

Reference

- 1. G. Kresse and D. Joubert, *Physical Review B*, 1999, **59**, 1758-1775.
- 2. G. Kresse and J. Furthmüller, *Physical Review B*, 1996, 54, 11169-11186.
- 3. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865-3868.
- 4. P. E. Blöchl, *Physical Review B*, 1994, **50**, 17953-17979.
- 5. S. Grimme, S. Ehrlich and L. Goerigk, *Journal of Computational Chemistry*, 2011, **32**, 1456-1465.
- 6. H. J. Monkhorst and J. D. Pack, *Physical Review B*, 1976, 13, 5188-5192.
- 7. P. E. Blöchl, O. Jepsen and O. K. Andersen, *Physical Review B*, 1994, 49, 16223-16233.
- 8. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *Journal of The Electrochemical Society*, 2005, **152**, J23.
- P. Lv, D. Wu, B. He, X. Li, R. Zhu, G. Tang, Z. Lu, D. Ma and Y. Jia, *Journal of Materials Chemistry A*, 2022, 10, 9707-9716.

- 10. K. Yang, S.-H. Han, C. Cheng, C. Guo, T. Li and Y. Yu, *Journal of the American Chemical Society*, 2024, **146**, 12976-12983.
- 11. N. Sathishkumar, S.-Y. Wu and H.-T. Chen, Applied Surface Science, 2022, 598, 153829.
- 12. X. He, X. Li, X. Fan, J. Li, D. Zhao, L. Zhang, S. Sun, Y. Luo, D. Zheng, L. Xie, A. M. Asiri, Q. Liu and X. Sun, *ACS Applied Nano Materials*, 2022, **5**, 14246-14250.
- K. Fan, W. Xie, J. Li, Y. Sun, P. Xu, Y. Tang, Z. Li and M. Shao, *Nature Communications*, 2022, 13, 7958.
- 14. W. Li, K. Li, Y. Ye, S. Zhang, Y. Liu, G. Wang, C. Liang, H. Zhang and H. Zhao, *Communications Chemistry*, 2021, **4**, 10.
- G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nature Energy*, 2020, 5, 605-613.
- 16. C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen and G. Yu, *Angewandte Chemie International Edition*, 2018, **57**, 10246-10250.
- X. Fan, L. Xie, J. Liang, Y. Ren, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, B. Tang, Y. Liu,
 S. Gao, A. A. Alshehri, Q. Liu, Q. Kong and X. Sun, *Nano Research*, 2022, **15**, 3050-3055.
- S.-L. Meng, C. Zhang, C. Ye, J.-H. Li, S. Zhou, L. Zhu, X.-B. Li, C.-H. Tung and L.-Z.
 Wu, *Energy & Environmental Science*, 2023, 16, 1590-1596.
- S. Liu, T. Qian, M. Wang, H. Ji, X. Shen, C. Wang and C. Yan, *Nature Catalysis*, 2021, 4, 322-331.
- 20. Z. Ke, D. He, X. Yan, W. Hu, N. Williams, H. Kang, X. Pan, J. Huang, J. Gu and X. Xiao, *ACS Nano*, 2023, **17**, 3483-3491.
- 21. P. Li, Z. Jin, Z. Fang and G. Yu, Energy & Environmental Science, 2021, 14, 3522-3531.
- 22. M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong and C. Yan, *Nature Communications*, 2019, **10**, 341.
- 23. C. Wang, W. Zhou, Z. Sun, Y. Wang, B. Zhang and Y. Yu, Journal of Materials

Chemistry A, 2021, **9**, 239-243.

- 24. G. Wen, J. Liang, Q. Liu, T. Li, X. An, F. Zhang, A. A. Alshehri, K. A. Alzahrani, Y. Luo, Q. Kong and X. Sun, *Nano Research*, 2022, **15**, 972-977.
- 25. R. D. Milton, S. Abdellaoui, N. Khadka, D. R. Dean, D. Leech, L. C. Seefeldt and S. D. Minteer, *Energy & Environmental Science*, 2016, 9, 2550-2554.
- 26. L. Hu, D. Zhao, C. Liu, Y. Liang, D. Zheng, S. Sun, Q. Li, Q. Liu, Y. Luo, Y. Liao, L. Xie and X. Sun, *Inorganic Chemistry Frontiers*, 2022, 9, 6075-6079.
- 27. R. Nittoor-Veedu, X. Ju, M. Langer, W. Gao, M. Otyepka and M. Pumera, *Small*, 2025, 21, 2410105.
- 28. J. Liang, B. Deng, Q. Liu, G. Wen, Q. Liu, T. Li, Y. Luo, A. A. Alshehri, K. A. Alzahrani,D. Ma and X. Sun, *Green Chemistry*, 2021, 23, 5487-5493.
- 29. Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, J. Y. Kim, Y. Xia, K. Heck, Y. Hu, M. S. Wong, Q. Li, I. Gates, S. Siahrostami and H. Wang, *Nature Communications*, 2021, **12**, 2870.