## Recycling Spent Zinc Ion Primary Batteries and Utilized as Superior Rechargeable Lithium-Ion Energy Storage

Ramu Manikandan<sup>a</sup>, Periyasamy Sivakumar<sup>b</sup>, S. Vandana<sup>c</sup>, L. John Kennedy<sup>c</sup>, John D Rodney<sup>d,e</sup>,

Byung Chul Kim<sup>d</sup>, Hyun Jung<sup>b</sup>, Jae-Min Oh<sup>a</sup>, C. Justin Raj<sup>c\*</sup>

<sup>a</sup>Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea

<sup>b</sup>Advanced Functional Nanohybrid Material Laboratory, Department of Chemistry, Dongguk University-Seoul Campus, Seoul, Republic of Korea

<sup>c</sup> Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT-Chennai), Chennai, 600 127, Tamil Nadu, India

<sup>d</sup> Department of Advanced Components and Materials Engineering, Sunchon National University,

255, Jungang-ro, Suncheon-si, Jellanamdo, 57922, Republic of Korea

<sup>e</sup> Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 60210

\*Corresponding authors Email: cjustinraj@gmail.com

## 1. Characterization

The structure and morphology of the synthesized ZMO@C sample were investigated using the following measurements: X-ray diffraction (XRD, D/max-2400, Rigaku, Ultima IV), Raman spectroscopy (Renishaw in Via RE04 Raman spectroscopy, with excitation laser wavelength of 532 nm), X-ray photoelectron spectra (XPS, Thermo Fisher electron spectrometer K-Alpha), N<sub>2</sub> adsorption-desorption isotherms (BEL-SORP-mini II (Microtac BEL, Inc., Tokyo, Japan, at 77 K to analyze the specific surface area and pore size distribution), scanning electron microscopy (SEM, Hitachi-S4800 at an accelerating voltage of 3 kV), and transmission electron microscopy (TEM, JEOL model JEM-22100F (Japan)).

## 2. Fabrication of supercapacitor and testing

The ZMO@C electrode was prepared utilizing a conventional slurry technique. The electrode mixture was developed by combining the ZMO@C (70 wt%), carbon black (20 wt%), and PVDF (10 wt%) with a sufficient quantity of NMP solution. The mixture was ground physically with a mortar and pestle until a homogenous paste was formed. The resulting mixture was coated onto a stainless steel (SS) current collector  $(1 \times 1 \text{ cm}^2)$  and allowed to dry overnight at 80 °C. The mass of the active material on the electrode was controlled between ~ 0.0035 and 0.004 g. The symmetric device (SDC) was assembled utilizing the stainless-steel split test cell (EQ-STC) from MTI Korea Limited. The SDC was fabricated by a pair of ZMO@C coated SS substrates as the positive and negative electrodes. A separator (Whatman filter paper) was positioned between the two parallelly assembled electrodes were arranged in a sandwich fusion. Additionally, several drops of a 1 M LiClO₄/acetonitrile (1 M LPC/ACN) electrolyte were added in between the electrodes.

## 3. Electrochemical measurements

. .

To analyze the electrochemical properties of the ZMO@CC electrodes at room temperature, a VSP Biopotentiostat/galvanostat (BioLogic) electrochemical workstation (France) was used. Electrochemical studies, including electrochemical impedance spectroscopy (EIS), galvanostatic charge-discharge (GCD), and cyclic voltammetry (CV), were performed in a 1 M LiClO<sub>4</sub>/acetonitrile (1 M LPC/ACN) electrolyte. The GCD was evaluated for various current densities 0.1, 0.2, 0.5, 0.7, 1, 2, 3, 4, and 5 A/g, and CV was examined for various scan speeds ranging from 5 to 100 mV/s for the symmetric supercapacitor (50 mV/s for three electrode configuration). EIS was assessed with a bias condition of 0 V and a sinus amplitude of 10 mV in the frequency range of 0.01 Hz to 100 kHz.

The specific capacitances ( $C_{sp}$ ; F/g) were calculated from the CV curves according to the following equation (1),

$$C_{sp} = 2 \left( \frac{\int i dv}{m \times s \times \Delta V} \right) \tag{1}$$

where, *m* is the mass of active material on electrodes (g), *s* is the potential scan rate (mV/s), *i* is the voltammetric current (A), and  $\Delta V$  is the potential window (V) of CV curve.

The specific capacitance ( $C_{sp}$ ; F/g) value of the SDC was determined from the GCD curves using Equation. (2).

$$C_{sp} = 2\left(\frac{I\Delta t}{m\Delta V}\right) \tag{2}$$

Where I is the constant discharge current (A),  $\Delta t$  is the discharge time (s), m is the mass of active materials (g), and  $\Delta V$  is the voltage window (V).

The real and imaginary components of the capacitance, combining to represent the SDC's capacitance in the low-frequency zone, are thoroughly described by Equations. (3), (4), and (5).

$$C = C'(\omega) - jC''(\omega)$$
<sup>(3)</sup>

where the real and imaginary portions of capacitance can be expressed by C' and C", which are represented as,

$$C' = \frac{Z''(\omega)}{\omega |Z(\omega)|^2}$$

$$C'' = \frac{Z'(\omega)}{\omega |Z(\omega)|^2}$$
(4)
(5)

The specific Energy  $(E_{sp})$  and specific power  $(P_{sp})$  of SDC were calculated using Equations. (6) and (7),

$$E_{sp} = \frac{0.125C_{sp} \times \Delta V^2}{3.6}$$

$$P_{sp} = \frac{E_{sp} \times 3600}{\Delta t}$$
(6)
(7)

Where,  $E_{sp}$  is the specific energy (Wh/kg),  $P_{sp}$  is the specific power (W/kg),  $\Delta V$  is the GCD discharge time,  $C_{sp}$  is the specific capacitance (C<sub>sp</sub>) of the SDC (g), and  $\Delta t$  is the discharge time (s).



Figure. S1 XPS survey spectrum of ZMO@C composite



Figure. S2 Nitrogen adsorption-desorption isotherms, and inset BJH pore volume curve of ZMO@C composite



Figure. S3 FE-SEM (a)(i-iii) elemental mapping images of ZMO@C composite



**Figure. S4** CV measurements using a three-electrode cell tested in 1 M LCP/ACN electrolyte at the scan rate of 25 mV/s in the potential window between -1.25 to 1.25 V

| Element | Wt%    | Atomic % |
|---------|--------|----------|
| С       | 42.06  | 55.89    |
| 0       | 38.08  | 37.99    |
| Na      | 0.49   | 0.34     |
| Al      | 0.82   | 0.49     |
| Si      | 0.11   | 0.06     |
| Mn      | 15.84  | 4.60     |
| Zn      | 2.60   | 0.63     |
| Total:  | 100.00 | 100.00   |

 Table S1. Elements weight and atomic percentages from the SEM EDS spectra of ZMO@C

 composite.

| Specific current     | Charging time | Discharging time | Columbic efficiency |
|----------------------|---------------|------------------|---------------------|
| (A g <sup>-1</sup> ) | (\$)          | <b>(s)</b>       | (%)                 |
| 0.1                  | 461           | 523              | 113                 |
| 0.2                  | 197           | 199              | 101                 |
| 0.5                  | 62            | 63               | 101                 |
| 0.7                  | 36            | 37               | 102                 |
| 1                    | 23            | 23               | 100                 |
| 2                    | 9             | 9                | 100                 |
| 3                    | 5             | 5                | 100                 |
| 4                    | 4             | 3.9              | 97                  |
| 5                    | 2             | 1.9              | 95                  |

 Table S2. Coulombic efficiency of SDCs at various specific currents.

|                                       | 1 0 1          | after cycling | serially  | parallelly |
|---------------------------------------|----------------|---------------|-----------|------------|
|                                       | before cycling |               | connected | connected  |
| Parameters                            | test of SDC    | test of SDC   | two SDC   | two SDC    |
|                                       | cell cell      | two SDC       | two SDC   |            |
|                                       |                |               | cells     | cells      |
| $R_s(\Omega \ cm^2)$                  | 2.8            | 2.8           | 6.5       | 1.6        |
| $R_{sl}(\Omega \ cm^2)$               | 16             | 17.6          | 193       | 147        |
| $C_{sl} (mF/cm^2)$                    | 0.61           | 0.027         | 0.43      | 0.50       |
| Rct ( $\Omega$ cm <sup>2</sup> )      | 43.1           | 58.53         | 101       | 22.8       |
| $C_p (mF/cm^2)$                       | 0.04           | 0.039         | 0.02      | 0.041      |
| C <sub>dl</sub> (mF/cm <sup>2</sup> ) | 0.69           | 0.66          | 0.77      | 0.86       |
| $W_R(\Omega \ cm^2)$                  | 0.46           | 38            | 200       | 68.1       |

**Table S3.** EIS fitted parameters of before cycling test of SDC cell, after cycling test of SDC cell,serially connected two SDC cells, and parallelly connected two SDC cells