Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Hierarchically Porous Polyimide/Graphene Aerogels with Superior Compressibility and Electromagnetic Interference Shielding Performance

Yuehao Zhao^{1,3,4}, Haiming Chen^{1,3*}, Shiya Qiao^{1,3}, Zhen Wang^{1,2,3,4}, Jingling Yan^{1,2,3,4*}

- 1. Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- 2. State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- 3. Ningbo Key Laboratory of High-Performance Polymers and Composites, Ningbo, 315201, China
- 4. University of Chinese Academy of Sciences, Beijing, 100049, China

List of Contents for Supplementary Materials:

Figure S1. Synthesis of PAAS

Figure S2. ¹H NMR spectrum of PAAS

Figure S3. FTIR spectra of PAAS, polyimide, $P_1G_2M_0$, and $P_1G_2M_6$

Figure S4. TGA curves of $P_1G_0M_0$, $P_1G_2M_0$, and $P_1G_2M_6$, respectively.

Figure S5. SEM images of $P_x G_y M_0$ aerogels

Figure S6. a) SEM images of $P_1G_2M_6$ before thermal treatment; b) SEM images of graphene; c) SEM images

of PMMA microspheres

Figure S7. SEM images of $P_x G_y M_z$ aerogels after thermal treatment

Figure S8. Residual strain of $P_1 G_v M_{0.}$

Figure S9. Electrical conductivity of $P_1G_2M_z$.

Figure S10. a) EMI SE of $P_1G_3M_z$; b) EMI SE, EMI SE_A and EMI SE_R of $P_1G_3M_z$

Figure S11. (a-f) Cyclic compressive stress-strain curves of $P_1G_yM_0$; (g) Compressive modulus and stress at strain of 30% for $P_1G_yM_0$

Figure S12. Cyclic compressive stress-strain curves of a) $P_1G_2M_{1.5}$, b) $P_1G_2M_3$, c) $P_1G_2M_9$, and d) $P_1G_2M_{12}$

Table S1. Comparisons of $P_1G_2M_6$ with reported EMI shielding aerogels

Supplementary Figures

Figure S1. Synthesis of PAAS

Figure S2. ¹H NMR spectrum of PAAS

Figure S3. FTIR spectra of PAAS, Polyimide, $P_1G_2M_0$, and $P_1G_2M_6$

Figure S4. TGA curves of $P_1G_0M_0$, $P_1G_2M_0$, and $P_1G_2M_6$, respectively.

Figure S5. SEM images of $P_x G_y M_0$ aerogels

Figure S6. a) SEM images of $P_1G_2M_6$ before thermal treatment; b) SEM images of graphene; c) SEM images of PMMA microspheres

Figure S7. SEM images of $P_x G_y M_z$ aerogels after thermal treatment

Figure S8. Residual strain of $P_1G_yM_{0.}$

Figure S9. Electrical conductivity of $P_1G_2M_z$.

Figure S10. a) EMI SE of $P_1G_3M_z$; b) EMI SE, EMI SE_A and EMI SE_R of $P_1G_3M_z$

Figure S11. (a-f) Cyclic compressive stress-strain curves of $P_1G_yM_0$; (g) Compressive modulus and stress at strain of 30% for $P_1G_yM_0$

Figure S12. Cyclic compressive stress-strain curves of a) $P_1G_2M_{1.5}$, b) $P_1G_2M_3$, c) $P_1G_2M_9$, and d) $P_1G_2M_{12}$

Sample	EMI SE (dB)	Stress (kPa)	Content of filler (%)	Ref
AgNW/CNF	35	5	50	1
GO/CNF	43.3	1.4	6	2
Graphene/ANF	31.55	100	41.18	3
MXene/CNTs	32.5	0.2	100	4
MXene/CNTs/WPU	20.06	45.7	8.68	5
MXene/Graphene	45	10	100	6
MXene/PVP	40.6	60	70	7
rGO/CNF	32	4	50	8
rGO/CNF	33	6	50	9
Carbon	38	0.1	100	10
MXene/CuS	32.31	2.5	100	11
GO/PolyetheramineF	27.3	4	58.8	12
GO/CNF	36.75	0.5	50	13
GO/CNF	34.4	2.5	66.7	14
Fe ₃ O ₄ /Graphene	41	5	100	15
MOF/CNF	46.5	4	8	16
Graphene/PI	48.3	93.4	0.05	This work

Table S1. Comparisons of $P_1G_2M_6$ with reported EMI shielding aerogels

References:

- 1. Z. Zeng, T. Wu, D. Han, Q. Ren, G. Siqueira and G. Nyström, ACS Nano, 2020, 14, 2927-2938.
- J. Zhang, W. Guo, S. Shen, Q. Zhang, X. Chen, Z. Wang, K. Shao, Q. Sun and C. Li, ACS Applied Materials & Interfaces, 2024, 16, 16612-16621.
- N. Luo, Y.-y. Zhang, H. Zhang, T.-l. Liu, Y. Wang, F. Chen and Q. Fu, *Journal of Materials Chemistry* A, 2024, 12, 10359-10368.
- 4. Z. Ma, Z. Deng, X. Zhou, L. Li, C. Jiao, H. Ma, Z.-Z. Yu and H.-B. Zhang, Carbon, 2023, 213, 118260.
- 5. T. Zuo, C. Xie, W. Wang and D. Yu, ACS Applied Nano Materials, 2023, 6, 4716-4725.
- Z. He, W. Zhang, J. Zhang, J. Xie, F. Su, Y. Li, D. Yao, Y. Wang and Y. Zheng, Composites Part B: Engineering, 2024, 274, 111230.
- Z. Guo, Y. Li, P. Jin, T. Zhang, Y. Zhao, Y. Ai, H. Xiu, Q. Zhang and Q. Fu, *Polymer*, 2021, 230, 124101.
- M. Li, M. Zhang, Y. Zhao, S. Jiang, Q. Xu, F. Han, J. Zhu, L. Liu and A. Ge, *Carbohydrate Polymers*, 2022, 286, 119306.
- M. Li, F. Han, S. Jiang, M. Zhang, Q. Xu, J. Zhu, A. Ge and L. Liu, Advanced Materials Interfaces, 2021, 8, 2101437.
- Y. Hou, J. Quan, B. Q. Thai, Y. Zhao, X. Lan, X. Yu, W. Zhai, Y. Yang and B. C. Khoo, *Journal of Materials Chemistry A*, 2022, 10, 22771-22780.
- C. Chen, X. Li, P. Yi, Z. Geng, H. Zou, G. Deng, M. Fang, R. Yu, J. Shui and X. Liu, *Journal of Materials Science & Technology*, 2025, 224, 80-91.
- 12. C. Liu, S. Ye and J. Feng, Chemistry An Asian Journal, 2016, 11, 2586-2593.
- D. Liao, Y. Guan, Y. He, S. Li, Y. Wang, H. Liu, L. Zhou, C. Wei, C. Yu and Y. Chen, *Ceramics International*, 2021, 47, 23433-23443.
- 14. L. Wang, H. Shen, H. Zhang, D. Xu and J. Zhou, Journal of Alloys and Compounds, 2024, 980, 173505.
- 15. S. Guo, H. Xu, M. Dong, M. Peng, C. Liu and C. Shen, Applied Surface Science, 2020, 525, 146569.
- 16. H. Ma, Z. Wang, X.-F. Zhang and J. Yao, Ceramics International, 2023, 49, 20951-20959.