Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Mo-cation/O-anion doping strategy for creating vacancy defects and cation multivalency to

enhance the hydrogen evolution of ZnS under visible light

Xinru Wu^{1,#}, Tsz Lok Wan^{2,#,*}, Baoqian Yang¹, Dong-Hau Kuo^{3,*}, Pengkun Zhang¹, Minghao Liu⁴, Samuel

Ndaghiya Adawara¹, Dongfang Lu^{1,*}, Jinguo Lin^{1,*}, Xiaoyun Chen^{1,*}

¹College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China

² School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering, University of

Alberta, Edmonton, AB, T6G 1H9, Canada

- ³ Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
- ⁴ School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD,

AU 4000, Australia

These authors contributed equally to this work.

* Corresponding author

- E-mail address: <u>dhkuo@mail.ntust.edu.tw</u> (D. H. Kuo)
- E-mail address: twan1@ualberta.ca (T.L. Wan)
- E-mail address: fjldf@126.com (D. Lu)
- E-mail address: fjlinjg@126.com (J. Lin)
- E-mail address: fjchenxy@126.com (X. Chen)

CONTENTS

1. Experimental Section	
1.1 Apparent quantum efficiency computation	3
1.2 Electrochemical measurements	
1.3 Details of computational models and parameters	4
2. Additional Figures	6
Fig. S1 The survey XPS spectrum	6
Fig. S2 $(ahv)^2$ versus hv curves	6
Fig. S3 Mott-Schottky curves	7
Fig. S4 Current density-potential plots	8
Fig. S5 Variation of PHER rate with the amount of catalysts	8
Fig. S6 PHER of catalysts at different pH values	9
Fig. S7 Correlation between AQE and UV–vis	9
Fig. S8 DFT computed the bandgaps	
Fig. S9 DFT for ZnMoOS-1	
3. Additional Tables	11
Table S1 Crystallinity, crystallite size, SBET, and XPS analyses	11
Table S2 Elemental analyses tested by XRF	11
Table S3 Elemental analyses tested by SEM-EDS	
Table S4 Average charge carrier lifetime	
Table S5 Reports on PHER performance	
References	14

1. Experimental Section

1.1 Apparent quantum efficiency computation

According to the literature reports for measuring the apparent quantum efficiency (AQE) [1, 2]. The experiment was measured under the photocatalytic reaction conditions of monochromatic light of 420 nm (λ), average radiation intensity (I) of 3.52 mW/cm², and irradiation area (A) of 32.75 cm². The total H₂ evolution with 50 mg of ZnMoOS-3 catalyst was 812.59 µmol, which can be used to determine the reacted photons (*N_{reac}*). The number of photons (*N_{in}*) illuminated to the reactor is computed according to the following equations:

$$N_{in} = \frac{E \times \lambda}{h \times c} = \frac{A \times I \times t \times \lambda}{h \times c} = \frac{32.75 \times 3.25 \times 10^{-3} \times 3600 \times 6 \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 5.26 \times 10^{21}$$
$$AQE = \frac{N_{reac}}{N_{in}} \times 100\% = \frac{2 \times 6.02 \times 10^{23} \times 812.59 \times 10^{-6}}{5.26 \times 10^{21}} \times 100\% = 18.6\%$$

1.2 Electrochemical measurements

The electrochemical performance of the ZnMoOS catalyst was evaluated at room temperature using a three-electrode system and an electrochemical workstation. The catalyst, acetylene black, and polytetrafluoroethylene were uniformly coated on a titanium mesh (1 cm \times 1 cm) in a mass ratio of 8: 1: 1. The working electrode was prepared by drying the coated sample in an oven at 85 °C for 4 hours. Cyclic voltammetry was used to assess the voltage stability of the catalyst using a 1.0 M KCl and 5 mmol/L Fe²⁺/Fe³⁺ electrolyte solution. Mott-Schottky (MS), electrochemical impedance spectroscopy (EIS), transient photocurrent (TPC), linear sweep voltammetry (LSV), and cyclic voltammetry (CV) were performed in a 1 M Na₂SO₄ solution at a pH value of 6.8.

1.3 Details of computational models and parameters

All spin-polarized calculations were performed using first-principles calculations within the framework of density functional theory (DFT), as implemented in the Vienna Ab initio Simulation Package (VASP) [3, 4]. The interaction between valence and core electrons was described using the frozen-core projector augmented wave (PAW) method and the generalized gradient approximation (GGA) [4, 5]. The kinetic energy cutoff was set to 500 eV. Brillouin zone sampling was carried out using the Monkhorst-Pack scheme, with grids of $3 \times 3 \times 1$ for structural optimization, $5 \times 5 \times 1$ for self-consistent calculations, and $7 \times 7 \times 1$ for charge density difference calculations. Long-range van der Waals (vdW) interactions were included using the DFT-D3 dispersion correction. The ZnOS and ZnMoOS-3 models were constructed as $3 \times 3 \times 1$ supercells. Additionally, dipole correction was applied during all calculations.

The hydrogen evolution reaction (PHER) involves the adsorption of a proton on the catalyst surface, followed by molecular hydrogen generation via desorption. Using the computational hydrogen electrode (CHE) method, the adsorption energy of hydrogen (H^*) is calculated as:

$$\Delta E_* = E_{H*} - E_* - \frac{1}{2}E_{H_2} \tag{1}$$

where E_{H^*} is the total energy of the studied catalyst with one adsorbed H atom. E^* and E_{H_2} is the energy of the catalyst and H₂ in the gas phase, respectively. The Gibbs free energy change (ΔG_{H^*}) can be calculated by [6]

$$\Delta G_{H*} = \Delta E_{H*} + \Delta E_{ZPE} - T \Delta S_{H*}$$
(2)

where ΔE_{ZPE} denotes the zero-point energy change of the adsorbed H atom on the catalyst surface, which is calculated to be 0.04 eV [6]. Furthermore, ΔS_{H^*} is the entropy change of H^{*} intermediate, which is estimated to be a constant value of -0.20 eV at 300 K [6]. This means that

$$\Delta G_{H*} = \Delta E_{H*} + 0.24 \, eV \tag{3}$$

In addition, the electron transfer of the model is intuitively evaluated by the charge density difference (CDD), which is defined as following equation:

$$\rho = \rho_T - \rho_{catalyst} - \rho_H \tag{4}$$

where ρ_T , $\rho_{catalyst}$, and ρ_H are the electron of the H state adsorbed on the ZnOS or ZnMoOS-3, free ZnOS or ZnMoOS-3, and isolated H atom, respectively.

2. Additional Figures

Fig. S1 The survey XPS spectrum of ZnMoOS-3

Fig. S2 (a) $(ahv)^2$ versus hv curves of ZnMoOS, ZnOS, and ZnS.

Fig. S3 Mott-Schottky curves of ZnS, ZnOS, ZnMoOS-1, ZnMoOS-2, ZnMoOS-3, and ZnMoOS-4 at 1000 kHz.

Fig. S4 Current density-potential plots of (a) ZnS, (b) ZnOS, (c) ZnMoOS-1, (d) ZnMoOS-2, and (e) ZnMoOS-4.

Fig. S5 Variation of PHER rate with the ZnMoOS, ZnOS, and ZnS amount.

Fig. S6 PHER of ZnMoOS, ZnOS, and ZnS at different pH values.

Fig. S7 Dependence of AQE ZnMoOS-3 as a function of irradiation wavelength, combining the UV-vis absorption spectrum.

Fig. S8 Top views and side views of the (a) ZnOS and (b) ZnMoOS-3. Band structures for (c) ZnOS, and (d) ZnMoOS-3

Fig. S9 (a) Band structures and (b) ELF for ZnMoOS-1.

3. Additional Tables

Catalyst –	Elements percentage (%)			(%)	Mo ⁴⁺ / Mo ⁴⁺ + Mo ⁶⁺	Crystallinity	Crystal size	S _{BET}
	Zn	Mo	0	S	(%)	(%)	(nm)	(m /g)
ZnS	44.23		10.02	45.75		80.25	1.8	29.6
ZnOS	42.88		16.17	40.95		75.43	2.2	35.9
ZnMoOS-1	41.27	8.68	11.42	38.63	15.68	62.30	2.8	45.6
ZnMoOS-2	41.36	8.75	11.59	38.30	24.22	55.24	2.9	52.3
ZnMoOS-3	41.40	8.95	12.11	37.54	25.00	49.61	4.0	64.7
ZnMoOS-4	41.41	8.78	12.36	37.45	26.88	47.79	3.3	54.0
ZnMoOS-3 after reaction	41.36	8.92	12.58	37.14	24.98	48.99	3.8	64.2

Table S1 Crystallinity, crystallite size, SBET, and XPS analyses of ZnOS and ZnMoOS catalysts

Table S2 Elemental analyses tested by XRF

Catalyst	Zn (%)	Mo (%)	O (%)	S (%)
ZnS	44.34		10.08	45.58
ZnOS	42.84		16.18	40.98
ZnMoOS-1	41.25	8.67	11.44	38.64
ZnMoOS-2	41.34	8.74	11.60	38.32
ZnMoOS-3	41.41	8.97	12.12	37.50
ZnMoOS-4	41.43	8.79	12.34	37.44
ZnMoOS-3 after reaction	41.38	8.93	12.56	37.13

Catalyst	Zn (%)	Mo (%)	O (%)	S (%)
ZnS	44.25		10.11	45.64
ZnOS	42.85		16.17	40.98
ZnMoOS-1	41.26	8.68	11.43	38.63
ZnMoOS-2	41.35	8.76	11.58	38.31
ZnMoOS-3	41.41	8.98	12.10	37.51
ZnMoOS-4	41.45	8.81	12.32	37.42
ZnMoOS-3 after reaction	41.39	8.94	12.56	37.11

Table S3 Elemental analyses tested by SEM-EDS

Table S4 Average charge carrier lifetime of ZnMoOS and ZnOS

Catalyst	A ₁	τ_1 (ns)	A ₂	τ ₂ (ns)	R ²	τ_{avg} (ns)
ZnS	1935.21	1.22	0.54	6.82	0.9945	1.216
ZnOS	822.23	1.27	4.15	4.05	0.9898	1.314
ZnMoOS-1	124.86	1.75	2.38	5.14	0.9974	1.930
ZnMoOS-2	62.17	1.88	3.09	5.51	0.9986	2.342
ZnMoOS-3	8.80	3.29	2.14	6.31	0.9992	4.250
ZnMoOS-4	251.71	1.48	3.73	4.94	0.9985	1.643

Catalyst	Sacrificial agent	Light source	AQE/AQY (%)	PHER rate (mmol/g/h)	Refs.
Mo-Sv-ZIS	Na ₂ S/Na ₂ SO ₃	300 W Xe	AQY 21.24 (420 nm)	5.739	[7]
MoS ₂ /O-ZnIn ₂ S ₄	Na ₂ S/Na ₂ SO ₃	300 W Xe	AQY 2.53 (420 nm)	4.002	[8]
CdS/Ni-Mo-S	10 vol% C ₆ H ₁₅ NO ₃	300 W Xe	N/A	0.838	[9]
Mo/S/g-C ₃ N ₄	10 vol% CH ₃ OH	300 W Xe	N/A	0.294	[10]
Zn-Cd-Mo-S	Na ₂ S/Na ₂ SO ₃	300 W Xe	AQE 6.9 (420 nm)	23.32	[11]
Mo/S-In ₂ S ₃	10 vol% C ₆ H ₁₅ NO ₃	300 W Xe	AQE 10.23 (420 nm)	5.45	[12]
CdIn ₂ S ₄ @MoS ₂	10 vol% C ₆ H ₁₅ NO ₃	300 W Xe	N/A	0.539	[13]
ZnO@ZnS	Na ₂ S/Na ₂ SO ₃	300 W Xe	AQE 2.58 (420 nm)	2.4	[14]
ZnO/ZnS/CdS	Na ₂ S/Na ₂ SO ₃	300 W Xe	N/A	2.64	[15]
ZnS/TiO ₂	Na ₂ S/Na ₂ SO ₃	300 W Xe	N/A	1.718	[16]
CdS/MoS ₂ /ZnS	Na ₂ S/Na ₂ SO ₃	300 W Xe	AQY 8.55 (420 nm)	11.902	[17]
ZnS/ZnAl-LDH	50 vol% CH ₃ OH	300 W Xe	N/A	4.41	[18]
ZnIn ₂ S ₄ /ZnS	Na ₂ S/Na ₂ SO ₃	300 W Xe	N/A	8.5	[19]
ZnO@ZnS@FeOOH	10 vol% CH ₃ OH	300 W Xe	N/A	0.53	[20]
CdIn ₂ S ₄ /ZnS	Na ₂ S/Na ₂ SO ₃	300 W Xe	AQE 2.15 (365 nm)	3.74	[21]
CdIn ₂ S ₄ /ZnS	Na ₂ S/Na ₂ SO ₃	300 W Xe	N/A	10.80	[22]
ZnS/NiS	Lactic acid	300 W Xe	AQE 30.4 (420 nm)	10.64	[23]
Ni ₂ P/ZnS/g-C ₃ N ₄	Na ₂ S/Na ₂ SO ₃	250 W Xe	N/A	3.991	[24]
ZnO/ZnS/Co ₃ O ₄	10 vol% CH ₃ OH	300 W Xe	N/A	0.153	[25]
NiCo ₂ O ₄ @ZnS	Na ₂ S/Na ₂ SO ₃ /NaCl	300 W Xe	N/A	0.88	[26]
Fe ₃ O ₄ @ZnS	Na ₂ S/Na ₂ SO ₃ /NaCl	300 W Xe	N/A	3.9	[27]
Zn _x Cd _{1-x} S/ZnS	Lactic acid	300 W Xe	AQE 10 (420 nm)	16.7	[27]
Zn-AgIn ₅ S ₈ /ZnS	Na ₂ S/Na ₂ SO ₃	300 W Xe	N/A	0.892	[28]
Cu ₂ O/CuS/ZnS	Na ₂ S/Na ₂ SO ₃	5 W LED	N/A	1.109	[29]
ZnMoOS-3	Na ₂ S/Na ₂ SO ₃	300 W Xe	AQE 18.6 (420 nm)	41.6	This work

Table S5 Reports on PHER performance over ZnS-based catalysts under visible light

References:

- [1] C. Li, T. Zhou, M. Yan, S. Cheng, Y. Wang, J. Sun, G. Chen, H. Dong, Intramolecular πconjugated channel expansion achieved by doping cross-linked dopants into carbon nitride frameworks for propelling photocatalytic hydrogen evolution and mechanism insight, *Inorg. Chem. Front.*, 9 (2022) 60-69.
- [2] M. Dan, S. Wei, D.E. Doronkin, Y. Li, Z. Zhao, S. Yu, J.-D. Grunwaldt, Y. Lin, Y. Zhou, Novel MnS/(In_xCu_{1-x})₂S₃ composite for robust solar hydrogen sulphide splitting via the synergy of solid solution and heterojunction, *Appl. Catal. B-Environ.*, 243 (2019) 790-800.
- [3] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.*, 6 (1996) 15-50.
- [4] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B*, 54 (1996) 11169.
- [5] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. *Phys. Rev. Lett.*, 77 (1996) 3865.
- [6] J.K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution. *J. Electrochem. Soc.*, 152 (2005) J23.
- [7] W. Guan, L. Zhang, P. Wang, Y. Wang, H. Wang, X. Dong, M. Meng, L. Sui, Z. Gan, L. Dong, L. Yu, Highly efficient photocatalytic hydrogen evolution over Mo-doped ZnIn₂S₄ with sulfur vacancies, *Nanomaterials-Basel.*, 12 (2022) 3980.
- [8] Y. Peng, X. Guo, S. Xu, Y. Guo, D. Zhang, M. Wang, G. Wei, X. Yang, Z. Li, Y. Zhang, F. Tian, Surface modulation of MoS₂/O-ZnIn₂S₄ to boost photocatalytic H₂ evolution, *J. Energy Chem.*, 75 (2022) 276-284.

- [9] H. Li, J. Pan, W. Zhao, C. Li, The 2D nickel □ molybdenum bimetals sulfide synergistic modified hollow cubic CdS towards enhanced photocatalytic water splitting hydrogen production, *Appl. Surf. Sci.*, 497 (2019) 143769.
- [10] Y. Li, S. Zhu, Y. Liang, Z. Li, S. Wu, C. Chang, S. Luo, Z. Cui, One-step synthesis of Mo and S co-doped porous g-C₃N₄ nanosheets for efficient visible-light photocatalytic hydrogen evolution, *Appl. Surf. Sci.*, 536 (2021) 147743.
- [11] P. Guo, D. Zhang, X. Liu, W. Liu, R. Wang, Z. Zhang, S. Qiu, In situ self-assembly of mesoporous Zn-Cd-Mo-S quaternary metal sulfides with double heterojunction synergistic charge transfer for boosting photocatalytic hydrogen production, *J. Alloy. Compd.*, 921 (2022) 166066.
- [12] M. Han, L. Liu, B. Guo, Z. Zhang, X. Li, Y. Chang, S. Luo, W. Lu, S. Li, J. Ye, Bi&Mo co-doped In₂S₃ nano-foam blocks for boosted photocatalytic hydrogen generation, *Int. J. Hydrogen Energ.*, 78 (2024) 140-147.
- [13]Y. Lu, H. Liu, L. Wang, Y. Geng, M. Zhang, Preparation of CdIn₂S₄ nanoparticles@MoS₂ microrods heterojunctions for boosted photocatalytic hydrogen production, *J. Alloy. Compd.*, 982 (2024) 173750.
- [14]H. Ren, K. Ye, H. Chen, F. Wang, Y. Hu, Q. Shi, H. Yu, R. Lv, M. Chen, ZnO@ZnS core-shell nanorods with homologous heterogeneous interface to enhance photocatalytic hydrogen production, *Colloid. Surface. A.*, 652 (2022) 129844.
- [15]K. He, ZnO/ZnS/CdS three-phase composite photocatalyst with a flower cluster structure: Research on its preparation and photocatalytic activity hydrogen production, *Int. J. Hydrogen Energ.*, 51 (2024) 30-40.
- [16]X. Gui, Y. Zhou, Q. Liang, M. Zhou, X. Li, S. Xu, Z. Li, Construction of porous ZnS/TiO₂ Sscheme heterostructure derived from MOF-on-MOF with boosting photocatalytic H₂-generation

activity, Int. J. Hydrogen Energ., 48 (2023) 38237-38250.

- [17]H. Yang, B. Hu, H. Sun, G. Ma, S. Wang, Y. Li, H. Zhang, H. Xie, H. Quan, H. Zhang, Stepped fluorinated CdS/MoS₂/ZnS nanoparticles constructed on a multifunctional platform with Zn(OH)F nanoflowers for highly active photocatalytic H₂ production, *Sep. Purif. Technol.*, 347 (2024) 127461.
- [18]D. Téllez-Flores, M. Sánchez-Cantú, F. Tzompantzi, A.G. Romero-Villegas, C. Tzompantzi-Flores, J.E. Carrera-Crespo, R. Pérez-Hernández, E. Rubio- Rosas, Influence of the Zn/Al molar ratio over the photocatalytic hydrogen production by ZnS/ZnAl-LDH composites, *Int. J. Hydrogen Energ.*, (2024) 0360-3199.
- [19] M. Li, S. Li, Y. Li, P. He, Y. Xiao, J. Chen, T. Ren, Decorating ZnS by ZnIn₂S₄ to fabricate hybrid photocatalyst ZnIn₂S₄/ZnS for high photocatalytic hydrogen generation performance, *Mater. Lett.*, 334 (2023) 133757.
- [20] T. Chigan, B. Ma, C. Zhang, X. Li, D. Jia, H. Li, P. Yang, Coupling interface constructions of ZnO@ZnS@FeOOH for photocatalytic hydrogen production performance, *Colloid. Surface. A.*, 688 (2024) 133551.
- [21]L. Xie, G. Liu, R. Suo, Z. Xie, H. Liu, J. Chen, J. Chen, C. Lu, Construction of a Z-scheme CdIn₂S₄/ZnS heterojunction for the enhanced photocatalytic hydrogen evolution, *J. Alloy. Compd.*, 948 (2023) 169692.
- [22] M. Li, T. Ren, Y. Li, S. Li, P. He, Y. Xiao, J. Chen, Constructing CdIn₂S₄/ZnS type-I band alignment heterojunctions by decorating CdIn₂S₄ on ZnS microspheres for efficient photocatalytic H₂ evolution, *Int. J. Hydrogen Energ.*, 48 (2023) 37224-37233.
- [23] Y. Li, X. Liu, Y. Wang, Y. Liu, R. Liu, H. Mu, Y. Hao, X. Wang, F. Li, Constructing interfacial electric field and Zn vacancy modulated ohmic junctions ZnS/NiS for photocatalytic H₂ evolution,

Green Energy Environ., (2024) 2468-0257.

- [24] R. Rameshbabu, J.K.S. Paw, K. Ajaijawahar, V. Vinoth, S. Jadoun, N. Pugazhenthiran, T.S. Kiong, Fabricating of multi-interfacial charge transfer paths in the novel noble-metal-free Ni₂P/ZnS/g-C₃N₄ ternary nanocomposite for enhanced charge separation and transfer for photocatalytic H₂ generation, *J. Alloy. Compd.*, 997 (2024) 174830.
- [25]F. Ma, X. Xu, C. Huo, C. Sun, Q. Li, Z. Yin, S. Cao, Dual heterogeneous structures promote electrochemical properties and photocatalytic hydrogen evolution for inverse opal ZnO/ZnS/Co₃O₄ crystals, *Inorg. Chem.*, 63 (2024) 8782-8790.
- [26]C. Chang, Z. Lee, M. Wei, C. Chang, K. Chu, Photocatalytic hydrogen production by magnetically separable Fe₃O₄@ZnS and NiCo₂O₄@ZnS core-shell nanoparticles, *Int. J. Hydrogen Energ.*, 40 (2015) 11436-11443.
- [27] J. Dong, W. Fang, W. Xia, Q. Lu, X. Zeng, Facile preparation of Zn_xCd_{1-x}S/ZnS heterostructures with enhanced photocatalytic hydrogen evolution under visible light, *RSCAdv.*, 11 (2021) 21642-21650.
- [28] Y. Liu, X. Wang, G. Gong, A.U. Khan, G. Li, T. Ren, Q. Chen, L. Li, B. Mao, Ultrathin-shelled Zn-AgIn₅S₈/ZnS quantum dots with partially passivated trap states for efficient hydrogen production, *Catalysts*, 14 (2024) 298.
- [29] Y.C. Chang, Y.C. Chiao, Y.X. Fun. Cu₂O/CuS/ZnS nanocomposite boosts blue LED-light-driven photocatalytic hydrogen evolution, *Catalysts*, 12 (2022) 1035.