Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Photonic Crystal-Integrated Thermo-Responsive Smart Windows with Multicolor and Enhanced NIR Shielding

Chunhao Li¹, Aojue Ke¹, Huifang Shen^{1*}, Xinya Zhang^{1*}

¹School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P.R. China

* Corresponding author

E-mail: cehfshen@scut.edu.cn; cexyzh@scut.edu.cn

This file includes Supporting Figure S1-S10, Supporting Table S1.

Supporting Figures

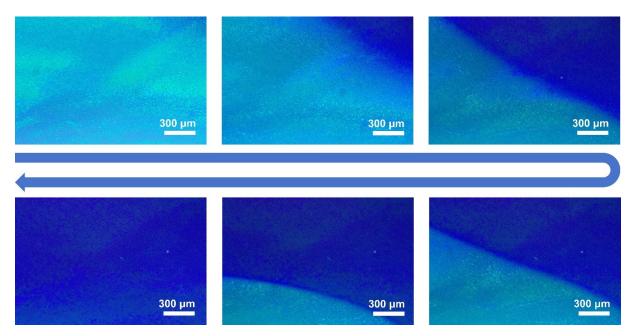
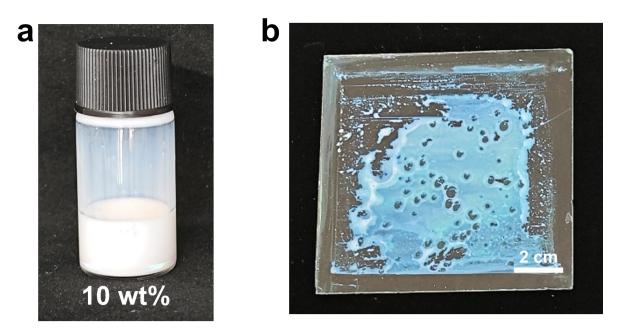
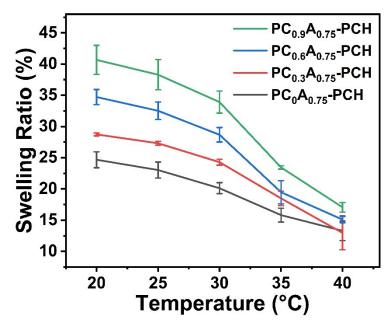




Figure S1. The self-assembly process of PS LCCs.

Figure S2. a) Digital image of 10 wt% PS microsphere dispersion. b) Digital image of photonic crystals assembled by 10 wt% PS microsphere dispersion.

Figure S3. Equilibrium swelling ratio of PNIPAm/CMC/ATO-PCH at varying temperatures.

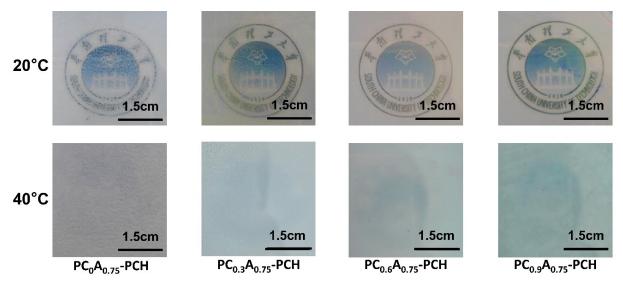


Figure S4. Digital images of PNIPAm/CMC/ATO-PCH at various temperatures.

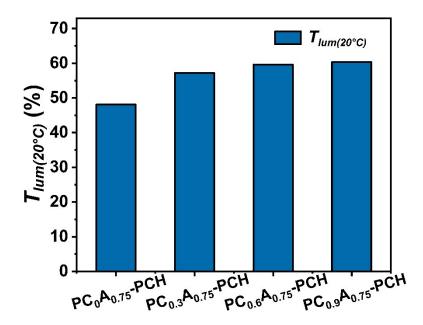


Figure S5. Visible light transmittance of the PNIPAm/CMC/ATO-PCH at 20°C.

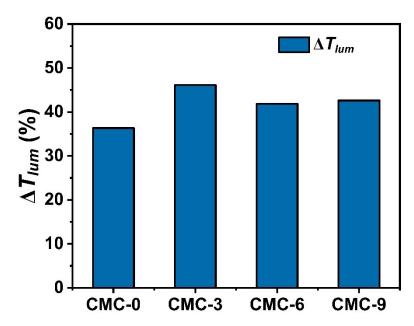
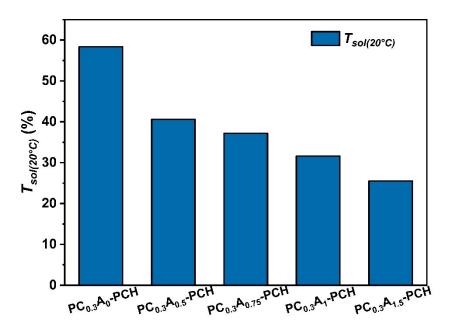
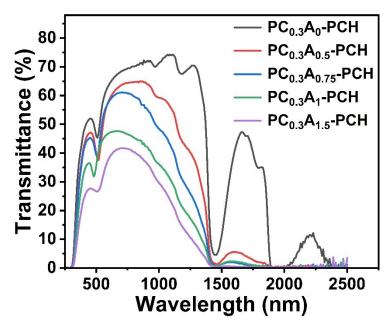




Figure S6. Visible modulation performance of the PNIPAm/CMC/ATO-PCH.

Figure S7. Solar light transmittance of the PNIPAm/CMC/ATO-PCH at 20°C.

Figure S8. UV–Vis-NIR spectra of the PNIPAm/CMC/ATO-PCH at 20°C.

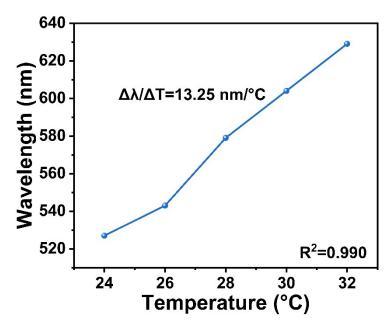


Figure S9. Thermochromic sensitivity of the PNIPAm/CMC/ATO-PCH.

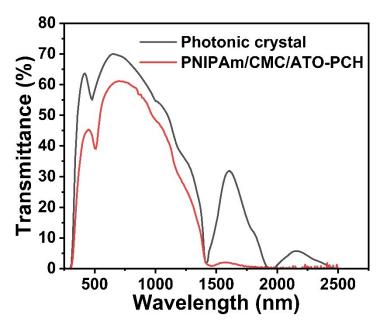


Figure S10. UV-Vis-NIR spectra of the Photonic crystal and the PNIPAm/CMC/ATO-PCH.

Supporting Tables

Table S1. The formulation for fabricating various PNIPAm/CMC/ATO-PCH.

Samples	NIPAm [g]	[g]	BIS [g]	ATO (50 wt%) [g]	APS [g]	TEMED [µL]	H ₂ O [g]	Named
1	1	0	0.01	0.15	0.02	10	10	PC ₀ A _{0.75} -PCH
2	1	0.03	0.01	0.15	0.02	10	10	PC _{0.3} A _{0.75} -PCH
3	1	0.06	0.01	0.15	0.02	10	10	PC _{0.6} A _{0.75} -PCH
4	1	0.09	0.01	0.15	0.02	10	10	PC _{0.9} A _{0.75} -PCH
5	1	0.03	0.01	0	0.02	10	10	PC _{0.3} A ₀ -PCH
6	1	0.03	0.01	0.1	0.02	10	10	PC _{0.3} A _{0.5} -PCH
7	1	0.03	0.01	0.15	0.02	10	10	PC _{0.3} A _{0.75} -PCH
8	1	0.03	0.01	0.25	0.02	10	10	PC _{0.3} A ₁ -PCH
9	1	0.03	0.01	0.3	0.02	10	10	PC _{0.3} A _{1.5} -PCH