Supporting Information

ZIF-L derived carbon flower with in-situ grown CNTs accelerates the reaction kinetics of Li-Se batteries

Jia-Le He^{a,†}, Liang Wu^{b,†}, Qian-Yu Gao^a, Mei-Tong Wei^{a, c}, Yi-Xun Liu^a, Zhi-Yi Hu^{a, c}, Jing Liu^a,

Yu Li^{a,*}, Bao-Lian Su^{a, d,*}

^a State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, 430070 Wuhan, Hubei, China.

^b School of Automotive Engineering, Xiangyang Polytechnic, 18 Longzhong Road, 441050, Xiangyang, Hubei, China.

^c Nanostructure Research Centre (NRC), Wuhan University of Technology, 122 Luoshi Road,
430070 Wuhan, Hubei, China.

^d Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Namur B-5000, Belgium.

[†] These authors contributed equally to this work.

* Corresponding authors. Email: <u>yu.li@whut.edu.cn</u> (Y. Li), <u>bao-lian.su@unamur.be</u> (B.-L. Su)

Fig. S1 SEM images of (a) Fe-ZIF-L-10, (b) CNTs@HPC-10 and (c) Se/CNTs@HPC-10.

Fig. S2 (a-d) HAADF-STEM image and element distributions of C, Se and N in Se/HPC.

Fig. S3 (a) XRD patterns of the precursors. (b) XRD patterns after carbonization. (c) N_2 adsorption-desorption isotherms after Se encapsulation.

Fig. S4 (a) C 1s, (b) N 1s and (c) Se 3d XPS spectra of Se/HPC. (d) Fe2p XPS spectrum of Se/CNTs@HPC-5.

Fig. S5 Cycling performance of Se/CNTs@HPC-5 cathodes with different areal mass loading of Se.

Fig. S6 CV curves of Se/CNTs@HPC-10 cathode at the scan rate of 0.2 mV s⁻¹.

Fig. S7 Capacitive contribution at the scan rate of 0.5 mV s⁻¹ for (a) Se/HPC-5 and (b) Se/HPC, respectively.

Fig. S8 Linear fitting of peak currents versus square root of the scan rates.

Fig. S9 (a) GITT curves and Li⁺ diffusion coefficient of Se/CNTs@HPC-10. (b) EIS spectra of different cathodes after cycling 10 cycles at 1 C.

Fig. S10 SEM image of Se/CNTs@HPC-5 electrode after 100 cycles at 1 C.

Matariala	Current	Cycle	Reversible	Areal	Deference
Matchais	Tale	number	capacity	loading	Kelelelice
	(C)	(n)	$(mAh g^{-1})$	$(mg \ cm^{-2})$	
Se/CNTs@HPC-5	0.5	350	606	1.0	This work
	5	400	355	1.0	
Se/C	0.15	250	430	1.2	1
Se/HPNC	1	500	410	-	2
Se@NPC-NS	0.5	225	585	0.72	3
Se@NHCS	0.5	1000	443	1.0	4
Se@CNTs@MPC	0.1	100	596	-	5
Se/CNTs microsphere	1	500	440	-	6
APPC/Se@PDA	5	1400	500	0.8-4.0	7
Se/Co-NC	1	200	480	1.0	8
Se@LHPC	0.5	450	500	0.47	9
CSe@HNCNFs	0.2	100	699	27.12	10

 Table S1
 Electrochemical performances of the reported Se/C composites

Table S2EDX elemental analysis of Se/CNTs@HPC-5

Z Eleme		t Family	Atomic Fraction	Atomic Error	Mass Fraction	Mass Error
	Element		(%)	(%)	(%)	(%)
6	С	K	47.12	6.78	15.48	1.48
7	Ν	K	9.85	2.43	3.77	0.84
8	0	K	6.49	1.60	2.84	0.63
30	Zn	K	2.72	0.53	4.86	0.80
34	Se	K	33.83	6.55	73.05	11.75

Notes and Reference

- C. Luo, J. J. Wang, L. M. Suo, J. F. Mao, X. L. Fan and C. S. Wang, *J. Mater. Chem. A*, 2015, 3, 555-561.
- W. N. Deng, Y. H. Li, D. F. Xu, W. Zhou, K. X. Xiang and H. Chen, *Rare Metals*, 2022, 41, 3432-3445.
- 3 X. W. Luo, M. R. Zhou, M. J. Ran, D. X. Xun, J. L. He, Z. Y. Hu, H. S. H. Mohamed, J. Liu, L. H. Chen, Y. Li and B. L. Su, *Chem. Eng. J.*, 2024, **488**, 150885.
- 4 B. Kalimuthu and K. Nallathamby, ACS Appl. Mater. Interfaces, 2017, 9, 26756-26770.
- 5 S. Xin, L. Yu, Y. You, H. P. Cong, Y. X. Yin, X. L. Du, Y. G. Guo, S. H. Yu, Y. Cui and J. B. Goodenough, *Nano Lett.*, 2016, 16, 4560-4568.
- 6 N. X. Feng, K. X. Xiang, L. Xiao, W. H. Chen, Y. R. Zhu, H. Y. Liao and H. Chen, J. Alloy. Compd., 2019, 786, 537-543.
- 7 Y. Q. Cao, F. F. Lei, Y. L. Li, S. L. Qiu, Y. Wang, W. Zhang and Z. T. Zhang, J. Mater. Chem. A, 2021, 9, 16196-16207.
- 8 F. Gao, X. A. Yue, X. Y. Xu, P. Xu, F. Zhang, H. S. Fan, Z. L. Wang, Y. T. Wu, X. Liu and Y. Zhang, *Rare Metals*, 2023, 42, 2670-2678.
- 9 P. F. Lu, F. Y. Liu, F. Zhou, J. Q. Qin, H. D. Shi and Z. S. Wu, J. Energy Chem., 2021, 55, 476-483.
- 10 J. Zhou, M. X. Chen, T. Wang, S. Y. Li, Q. S. Zhang, M. Zhang, H. J. Xu, J. L. Liu, J. F. Liang, J. Zhu and X. F. Duan, *Iscience*, 2020, 23, 20.