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1. Experimental sections

1.1 Caution!

Although we have encountered no accident during preparation and handling of compounds
described in this paper, they are potentially explosive energetic materials which are sensitive to
impact and friction. Any manipulations must be carried out by using appropriate standard safety
precautions. Operators must be equipped with safety equipment such as gloves coats, face shield
and explosion-proof baffle.

1.2 Materials and reagents

1,3,5,7-cyclooctatetraecne was supplied by Sigma-Aldrich. Unless otherwise specified,
the chemicals (AR grade) were obtained from commercial sources and were used without
further purification.

1.3 Characterization methods

'H and 3C NMR spectra were recorded on Bruker DPX- 500 instrument at 500 and 126 MHz,
respectively, using CDCl;, methanol-ds, DMSO-ds and acetone-dg as the solvent with TMS as the
internal standard. All IR spectra were obtained by Thermo Nicolet iS10 spectrometer equipped with
a Thermo Scientific Smart iTR diamond ATR accessory. TGA and DSC were measured with
TGA/SDTA851e and DSC823e, respectively, at a scan rate of 5 °C-min’!. Density of compound 5
was determined at 25 °C by employing a Micromeritics AccuPyc II 1340 gas pycnometer. Impact
and friction sensitivity measurements are made by using a standard BAM Fall hammer and a BAM
friction tester. Single-crystal X-ray diffraction measurements were conducted on a Bruker D8
CMOS detector employing graphite-monochromated Mo-Ka radiation (A=0.71073 A) and Cu-Ka
radiation (A=1.54178). The known compounds were identified by comparison of their physical and
spectral data with those reported in the literature. Yields refers to isolated yield of analytically pure

material unless otherwise noted.

1.4 Synthesis

tetraepoxide 7

m-CPBA o 0
CH,CI,,RT,4d

37.6% e)

6 7
To a suspension of m-CPBA (1.0 g, 5 mmol, 85%) in 5 mL of CH,CIl, at 0 °C was added
dropwise a solution of compound 6 (52.1 mg, 0.5 mmol) in 20 mL of CH,Cl,. After being stirred at
room temperature for 4 days, the solution was diluted with an additional 30 mL of CH,Cl,, washed
with 10% aqueous NaHSO; (10 mL), 5% NaHCO; (30 mL), H,O (30 mL), and then dried over

Na,SO4 and concentrated in vacuum. The product was purified by flash chromatography (ethyl
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acetate/petroleum = 1:150) to afford the tetraepoxide 7 (31.6 mg, 37.6%) as a colorless crystalline
solid. 'TH NMR (500 MHz, chloroform-d) § 3.18 (s, 1H). 13C NMR (126 MHz, chloroform-d) &
52.74.

2,6-dinitro-2,6-diazaadmantane-4,8,9,10-tetrayl tetranitrate (1) and 2,6-dinitro-2,6-
diazahomonoradmantane-4,8,9,10-tetrayl tetranitrate (2)

2 1) NH3/CH;0H ~ O2NO, NO, 02NQ ONO,
120°C, 36 h 0,NO

\ ‘ry OZN\ N02
o N ONO, © 0,NO=C'N"N'">ONO
2) TFAA, HNO; N7 2 O 2
Y 40°C, 2h ON ONO
7 1 2

To a solution of 7 (31.6 mg, 0.19 mmol) in 5 mL of CH3;0H was added 10 mL of ammonia-
saturated CH;OH. The mixture was heated to 120 °C for 36 h in a steel bomb. After cooling, the
mixture was concentrated in vacuum to afford the crude product (36.5 mg). To a mixture of
trifluoroacetic anhydride (3 mL) and 98% fuming nitric acid (2 mL) at 0 °C was added the above
crude product. The reaction mixture was heated to 40 °C. After stirring for 2 h, the reaction mixture
was cooled to ambient temperature and poured into ice-water (20 mL) with agitation. The white
participate was filtered, washed with water and dried in vacuum. The product was purified by flash
chromatography (1:150 ethyl acetate/petroleum) to afford compound 1 (11.4 mg, 12.7% over 2
steps) as a white solid, along with compound 2 (26.2 mg, 29.2% over 2 steps) as a white solid, too.

Compound 1: '"H NMR (500 MHz, acetone-dg) 6 5.99 (d, J = 3.9 Hz, 1H), 5.96 (d, J= 2.5 Hz,
1H). 3C NMR (126 MHz, acetone-ds) 8 71.51, 51.88. IR (thin film, v/em™): 2917, 2846, 1650,
1535, 1276, 1104, 811, 795, 734, 651. Elemental analysis calcd (%) for CgHgNgOy4: C 20.35, H
1.71, N 23.73; found: C 20.37, H 1.72, N 23.70.

Compound 2: 'TH NMR (500 MHz, acetone-dg) 6 6.19 (d, J = 6.8 Hz, 1H), 6.06 (s, 1H), 5.98 (s,
1H), 5.93 (d, J = 6.8 Hz, 1H). 3C NMR (126 MHz, acetone-dg) & 80.17, 77.08, 65.70, 61.74. IR
(thin film, v/cm™): 2928, 2358, 1656, 1541, 1276, 1098, 1066, 816, 739. Elemental analysis calcd
(%) for CgHgNgOy6: C 20.35, H 1.71, N 23.73; found: C 20.36, H 1.73, N 23.71.

3,8,11-trioxatetracyclo[4.4.1.0>%.07|undecane-5,10-diol

Oxone, NaHCO;3 ~OH
acetone, EA, 50°C, 2 d .
HO'

46%

@)
6 10

To a 100 mL three-necked flask equipped with dropping funnel and thermometer were added
NaHCO; (0.96g, 11.4mmol), water (10 mL), acetone (1.45 mL, 10mmol), ethyl acetate (20 mL) and
6 (52.1 mg, 0.5 mmol). A solution of Oxone (1.53 g, Smol) in water (15 mL) was added dropwise

over 1 h to the vigorously stirred reaction mixture at the rate to keep mixture temperature below 30



°C. After addition, the mixture was heated to 50 °C. After stirring for 24 h, the reaction mixture was
cooled to ambient temperature. A solution of Oxone (1.53 g, Smol) in water (15 mL) was added to
the above system below 30 °C. After addition, the mixture was heated to 50 °C for another 24 h,
and then quenched by 10% aqueous NaHSO; (20 mL). Aqueous phase was extracted with ethyl
acetate (3 x 30 mL). The combined organic phase was washed with water (20 mL), saturated
solution of NaHCO; (20 mL) and brine (20 mL), dried (Na,SO,4) and concentrated in vacuum. The
product was purified by flash chromatography (ethyl acetate/petroleum = 1:1) to afford compound
10 (42.8 mg, 46%) as a white solid. '"H NMR (500 MHz, methanol-d,)  3.99 (d, /= 8.0 Hz, 4H),
3.43 (d,J=3.9 Hz, 2H), 3.21 (d,/=3.9 Hz, 2H). 13C NMR (126 MHz, methanol-dys) 6 66.29, 63.26,
54.76, 48.22. IR (thin film, v/cm™): 3365, 2934, 1712, 1154, 1015, 844, 573. Elemental analysis
calcd (%) for CgH¢Os: C 51.61, H 5.41; found: C 51.63, H 5.42.

6-nitro-2-oxa-6-azaadamantane-4,8,9,10-tetrayl tetranitrate (3), 2-nitro-7-oxa-2-
azaprotoamantane-4,5,9,10-tetrayl tetranitrate (4), 7-nitro-2-oxa-7-azatwistane 4,5,9,10-

tetrayl tetranitrate (5)

0
O,NO, O;NO
‘\\OH 1) NH3/CH30H 2 . (e} - ON02
120°C,36h  O,NO . onN
. > : +
HO' 2) TFAAHNO, N—T4ONO2 g No 1O
40°C 2h O,N°  ONO, no,
10 3 4

To a solution of compound 8 (42.8 mg, 0.23 mmol) in 5 mL of CH3;0H was added 10 mL of
ammonia-saturated CH;OH. The mixture was heated to 120 °C for 24 h in a steel bomb. After
cooling, the mixture was concentrated in vacuum to afford the crude product (49 mg). To a mixture
of trifluoroacetic anhydride (3 mL) and 98% fuming nitric acid (2 mL) at 0 °C was added the above
crude product. The reaction mixture was heated to 40 °C. After stirring for 2 h, the reaction mixture
was cooled to ambient temperature and poured into ice-water (20 mL) with agitation. The white
participate was filtered, washed with water and dried in vacuum. The product was purified by flash
chromatography (ethyl acetate/petroleum = 1:100) to afford compound 3 (51.2 mg, 52% over 2
steps) as a white solid, along with compound 4 (11.5 mg, 11.7% over 2 steps) and compound 5 (26.5
mg, 26.9% over 2 steps) as white solids, too.

Compound 3: 'TH NMR (500 MHz, acetone-dg) 8 5.97 (s, 1H), 5.92 (dd, J=4.7, 2.3 Hz, 1H), 5.77
(d,J=4.0 Hz, 1H), 4.82 (d,J=4.6 Hz, 1H). >*C NMR (126 MHz, acetone-ds) & 72.87, 72.48, 66.45,
52.02. IR (thin film, v/em!): 2912, 1648, 1543, 1267, 1029, 819, 787, 731, 674, 457. Elemental
analysis calcd (%) for CgHgN¢O15: C 22.44, H 1.88, N 19.63; found: C 22.45, H 1.90, N 19.61.

Compound 4: '"H NMR (500 MHz, chloroform-d) & 5.48 (d, J = 5.6 Hz, 3H), 5.46 (s, 1H), 5.36
(d,J=5.2 Hz, 1H), 4.82 (d, J=5.1 Hz, 1H), 4.71 (d, J = 4.0 Hz, 1H), 4.63 (t, J = 4.2 Hz, 1H). 3C
NMR (126 MHz, chloroform-d) & 75.97, 75.94, 74.93, 74.89, 73.52, 73.10, 72.81, 68.94. IR (thin



film, v/em): 2922, 2352, 1639, 1276, 1025, 834, 750, 677. Elemental analysis caled (%) for
CgHgNgO1s: C 22.44, H 1.88, N 19.63; found: C 22.47 H 1.91, N 19.60.

Compound 5: '"H NMR (500 MHz, Chloroform-d) 8 5.63 (d, J = 3.6 Hz, 1H), 5.59 (dd, J=4.9,
2.2 Hz, 1H), 5.40 (d, /= 3.7 Hz, 1H), 4.49 (d, /= 4.8 Hz, 1H). 3C NMR (126 MHz, Chloroform-d)
871.79,71.23, 66.15, 51.60. IR (thin film, v/em™1):2928, 2358, 1656, 1457, 1358, 1098, 1077, 966,
822. Elemental analysis calcd (%) for CgHgN¢O,s: C 22.44, H 1.88, N 19.63; found: C 22.46, H
1.89, N 19.61.

2. Optimization of the reaction conditions for ammonolysis

and nitration

In order to explore the optimal reaction conditions for ammonolysis and nitration, we conducted

the following experiments using the synthesis of compound 3 as an example.
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Fig. S1. Influence of reaction temperature (a), reaction time (b), solvent type (c) to intermediate
11, and reaction temperature (d), reaction time (e), solvent proportion on nitration (f) to 3.

As illustrated in Fig. S1, when methanol was used as the solvent, in the range of 100~140 °C the
yield of compound 11 initially increases but then gradually decreases and the peak values were all
found to be at 120 °C. The reason might be attributed to that the reaction was incomplete under
relatively low temperature, which was supported by the presence of some residue substrate. While

4



under too high temperature the dehydration of the products would occur, because dark reaction
mixture was resulted and remarkable aromatization by-products might form since the TLC test
showed some observable spots under ultraviolet lamp. Thereby, the optimal temperature was
determined to be 120 °C. The reaction time affects the reaction dramatically, it can be seen from
Fig. S1b that the yield climbed initially and then fell along with the time. The superior reaction time
for all the products was determined to be 36 hours. The effect of the reaction solvent on the yield of
ammonolysis was demonstrated in Fig. Slc. In THF-MeOH mixed solvents, the yield of 11
increased along with the elevation of the methanol proportion, the same as 1,4-dioxane and
methanol systems. However, the two mixed solvent systems were inferior to single methanol.
Overall, the methanol is the best choice. The reaction conditions of nitration were systematically
explored. It could be deduced from Fig. S1d-f that the optimal conditions for the nitration was
reacting at 40 °C for 2 hours in the nitrating reagent with a ratio of 3:2 (TFAA/HNO;).

3. Crystallographic data

The absolute structures of compounds 1~4 was determined using X-ray diffraction techniques.
Single crystals of compounds 2 and 4 were successfully obtained through slow recrystallization
from a mixture of ethanol and dichloromethane at 2~8 °C in an icebox. While single crystals of
compounds 1 and 3 were obtained by slow recrystallization from two different solvent mixtures at
room temperature: one from a mixture of ethanol and chloroform, and the other from a mixture of
acetone and chloroform. Unfortunately, the single crystal suitable for X-ray diffraction analysis of
compound 5 were not obtained despite a number of solvent systems such as acetone, chloroform,
dichloromethane, ethanol, and their mixtures were attempted.

Table S1.  Crystal data and structure of 1-4

Identification code 1 2 3 4
CCDC 2400806 2400811 2400846 2426709
Empirical formula CgHgNgOy¢ CgHgNgOy4 CgHgN¢Oy5 CgHgN¢gO15
Formula weight 472.22 472.22 428.2 428.2
Temperature/K 298 293.15 298.15 293
Crystal system orthorhombic monoclinic monoclinic monoclinic
Space group P2,2,2, P2/c P2,/n P2,/n
a/A 8.8178(5) 14.9850(14) 7.3775(2) 7.3514(18)
b/A 12.7488(6) 8.7843(8) 23.9959(6) 24.141(6)
c/A 29.873(2) 14.7467(13) 8.7037(2) 8.7022(18)
a/° 90 90 90 90
/e 90 119.47 102.5580(10) 101.928(8)
v/° 90 90 90 90
Volume/A3 1195.25(19) 1689.9(3) 1503.95(7) 1511.0(6)
z 8 8 4 4
Peale g/lem? 1.868 1.856 1.891 1.882
wmm! 1.661 1.65 1.682 0.186
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F(000) 1920 960 872 872
) 0.13x0.12x0.1 0.13x0.12x0.1
Crystal size/mm3 0.13x0.12x0.11 ) 0.13x0.12x0.11 {
L CuKa CuKa CuKa MoKa
Radiation
(A =1.54178) (A =1.54178) (A=1.54178) (A=0.71073)
260 range for data
i 5916 t0 136.796 | 6.776 to 136.68 | 7.368 to 136.414 | 5.074 to 55.034
collection/®
-10<h<10, - -18<h<18, - -8<h<s, - -9<h=9, -
Index ranges 12<k<15, - 10<k<10, - 28<k<25, - 31<k<30, -
34<1<36 17<1<17 10<1<10 11<I<11
Reflections collected 23712 20928 12123 24684
. 6152 3089 2730 3478
Independent reflections
[Rin=0.1197] [Rin= 0.0832] [Rin= 0.0343] [Rin= 0.0796]
Data/restraints/parameters | 6152/2/577 3089/468/398 2730/4/262 3478/36/281
Goodness-of-fit on F2 1.024 1.024 1.071 1.104
. ) R1=0.0788, R=0.0906, R;=0.0635, R=0.0658,
Final R indexes [[>20 (I)]
wR,=0.1792 wR,=0.1976 wR,=0.1765 wR,=0.1388
. . R1=0.1094, R=0.1001, R1=0.0686, R=0.1028,
Final R indexes [all data]
wR,=0.1997 wR,=0.2013 wR,=0.1800 wR,=0.1565
Largest diff. peak/hole
JeAS 0.37/-0.35 0.41/-0.34 0.59/-0.66 0.41/-0.24
Fig. S2  Hydrogen bond diagram of compound 1
Table S2. Hydrogen bond table of compound 1
D-H--A d(D-H) d(H--A) d(D-A) ¢D-H-A
C3-H3--026 0.98 2.689 3.563 148.83
C4-H4--0O1! 0.98 2.471 3.254 136.64
C5-H5--03i 0.98 2.57 3.215 123.33
C14-H14--0O19f 0.98 2.425 3.093 125.04
C16-H16--015% 0.979 2.476 3.373 152.17

Symmetry codes: i) x+1/2, 1/2-y, 1-z; i) x+1/2, 3/2-y, 1-z; iii) x-1, y, z; iv) 1-x, 1/2-y, 3/2-z.




Fig.S3  Hydrogen bond diagram of compound 2

Table S3.  Hydrogen bond table of compound 2

D-H-A d(D-H) d(H+A) d(D--A) £D-H-A
C2-H2B--O7 0.98 2713 3.437 131.1
C3-H3A-09 0.979 2.591 3.266 126.15
C4-H4--012i 0.98 2.357 3.294 159.69
C5-H5A-O5Ai 0.98 2.658 3.766 122.64

Symmetry codes: i) -x, 1+y, 1/2-z; ii) -x, 1-y, -z; iii) 1-x, 2-y, 1-z.

-

Fig. S4  Hydrogen bond diagram of compound 3

Table S4. Hydrogen bond table of compound 3

D-H--A d(D-H) d(H+A) d(D--A) £D-H-A
C2-H2--010i 0.98 2.615 3.408 138.11
C3-H3--08ii 0.98 2.627 3.402 136.14
C6-H6--02ii 0.98 2.69 3.342 124.29
C7-H7--09 0.98 2.673 3.626 164.16

Symmetry codes: 1) 1-x, -y, 2-z; i) x+1/2, 1/2-y, z-1/2; iii) 1-x, -y, 2-z; iv) x+1/2, 1/2-y, z+1/2.



Fig.S5  Hydrogen bond diagram of compound 4

Table S5. Hydrogen bond table of compound 4

D-H-A d(D-H) d(H+A) d(D--A) £D-H-A
C2-H2--010i 0.98 2.586 3.372 137.11
C3-H3--O11ii 0.98 2.618 3.412 138.2
C6-H6-09%iii 0.98 2.68 3.629 163.29

Symmetry codes: 1) 1/2+x, 1/2-y, z-1/2; i) 1-x, 1-y, 1-z; ii1) 1/2+x, 1/2-y, 1/2+=z.

TableS6  Bond Lengths for 1

Parameter Length/A Parameter Length/A
O(1)-N(2) 1.217(11) O(5)-N(5) 1.404(10)
N(1)-N(2) 1.374(10) O(5)-C(5) 1.459(9)
N(1)-C(4) 1.482(10) N(5)-0(6) 1.175(11)
N(1)-C(8) 1.476(10) N(5)-O(7) 1.233(11)
C(1)-C(2) 1.511(13) C(5)-C(6) 1.541(11)
C(1)-C(8) 1.541(13) N(6)-O(8) 1.450(9)
C(1)-0(11) 1.471(11) N(6)-0(9) 1.204(10)
0(2)-N(2) 1.211(11) N(6)-0(10) 1.211(11)
C(2)-N(3) 1.463(11) C(6)-C(7) 1.532(11)
C(2)-C(3) 1.547(12) N(7)-0(11) 1.425(12)
0O(3)-N4) 1.216(10) N(7)-0(12) 1.216(13)
N(3)-N(4) 1.418(10) N(7)-0(13) 1.206(14)
N(3)-C(6) 1.463(10) C(7)-0(8) 1.461(9)
C(3)-C4) 1.553(13) C(7)-C(8) 1.539(11)
C(3)-0(14) 1.442(11) N(8)-0(14) 1.445(12)
0O(4)-N4) 1.223(10) N(8)-O(15) 1.196(13)
C4)-C(5) 1.533(11) N(8)-0(16) 1.144(14)

TableS7  Bond Angle for 1
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Parameter Angle/* Parameter Angle/®
N(2)-N(1)-C(4) 116.8(7) O(6)-N(5)-0(7) 130.8(9)
N(2)-N(1)-C(8) 116.7(7) O(7)-N(5)-0(5) 109.7(9)
C(8)-N(1)-C(4) 116.5(6) C(4)-C(5)-C(6) 109.5(7)
C(2)-C(1)-C(8) 110.0(8) O(5)-C(5)-C(4) 106.9(6)

O(11)-C(1)-C(2) 104.3(7) O(5)-C(5)-C(6) 104.1(6)
O(11)-C(1)-C(8) 109.5(7) 0(9)-N(6)-0(8) 117.7(8)
O(1)-N(2)-N(1) 117.7(9) 0(9)-N(6)-0(10) 132.19)
0(2)-N(2)-0(1) 125.1(8) O(10)-N(6)-O(8) 110.2(9)
0O(2)-N(2)-N(1) 117.2(8) N(3)-C(6)-C(5) 105.3(6)
C(1)-C(2)-C(3) 109.7(7) N(3)-C(6)-C(7) 110.0(7)
N(3)-C(2)-C(1) 107.3(7) C(7)-C(6)-C(5) 109.6(6)
N(3)-C(2)-C(3) 107.1(7) O(12)-N(7)-O(11) 118.8(10)
C(2)-N(3)-C(6) 117.7(6) O(13)-N(7)-O(11) 110.7(11)
N(4)-N(3)-C(2) 115.8(7) O(13)-N(7)-0(12) 130.4(12)
N(4)-N(3)-C(6) 115.6(7) C(6)-C(7)-C(8) 108.9(7)
C(2)-C(3)-C(4) 109.6(7) O(8)-C(7)-C(6) 110.4(6)
O(14)-C(3)-C(2) 107.1(7) O(8)-C(7)-C(8) 101.9(6)
0O(14)-C(3)-C(4) 107.7(7) N(6)-O(8)-C(7) 112.7(7)
0(3)-N(4)-N(3) 115.9(8) O(15)-N(8)-O(14) 109.9(11)
0(3)-N(4)-0(4) 127.4(8) O(16)-N(8)-O(14) 116.3(10)
O(4)-N(4)-N(3) 116.6(8) O(16)-N(8)-O(15) 133.5(12)
N(1)-C(4)-C(3) 107.0(7) N(1)-C(8)-C(1) 109.1(7)
N(1)-C(4)-C(5) 108.9(7) N(1)-C(8)-C(7) 105.3(7)
C(5)-C(4)-C(3) 107.8(7) C(7)-C(8)-C(1) 110.5(7)
N(5)-0(5)-C(5) 114.1(7) N(7)-O(11)-C(1) 115.1(8)
O(6)-N(5)-0(5) 119.5(8) C(3)-0O(14)-N(8) 114.9(8)

TableS8  Bond Lengths for 2

Parameter Length/A Parameter Length/A
O1-N1 1.274(12) C4-06 1.428(8)
N1-02 1.087(11) N5-N6 1.347(8)
N1-03 1.298(13) N5-09 1.218(7)
C1-C2 1.527(10) C5-C6 1.566(8)
C1-C3 1.484(10) N6-Co 1.464(8)
N2A-C22 1.63(4) N6-C8 1.480(7)
N2A-C3 1.43(2) N7-011 1.390(7)
N2-C22 1.469(11) N7-012 1.175(9)



N2-N3 1.356(9) N7-013 1.168(9)
N2-C3 1.439(9) C7-C83 1.554(8)
C2-C22 1.527(16) C7-011 1.417(7)
C3-C4 1.551(9) N8-015 1.187(15)
N4-06 1.481(9) N8-016 1.472(11)
N4-07 1.175(10) C8-C83 1.568(12)
Table S9  Bond Angle for 2
Parameter Angle/® Parameter Angle/*
O1-N1-03 113.8(8) 08-N4-06 110.0(9)
02-N1-01 127.2(10) C41-C4-C3 118.1(4)
02-N1-03 118.9(12) 06-C4-C3 104.9(5)
O3A-C1-C2 91(3) 09-N5-010 128.4(7)
0O3A-C1-C3 111(5) O10-N5-N6 116.1(6)
03-C1-C2 103.8(7) C6-C5-C52 117.4(4)
03-C1-C3 112.0(11) 016-C5-C52 110.0(8)
C3-C1-C2 102.9(5) 016-C5-C6 104.5(6)
N3A-N2A-C3 122(3) 0O16A-C5-C6 112.4(16)
C3-N2A-C21 105(2) N5-N6-C6 123.1(5)
N3-N2-C21 120.7(7) N5-N6-C8 120.7(5)
N3-N2-C3 124.1(7) C6-N6-C8 113.6(5)
C3-N2-C21 112.9(7) N6-C6-C5 109.5(5)
Cl-C2-C21 105.9(8) C7-C6-C5 114.2(5)
N21-C2-C1 107.0(6) O12-N7-011 113.5(8)
N21-C2-C21 101.7(6) 0O13-N7-012 128.5(8)
N1-03-Cl 121.4(9) 0O11-C7-C82 104.3(5)
C1-C3-C4 115.2(6) N6-C8-C72 106.4(5)
N2A-C3-Cl 112(2) N6-C8-C82 102.9(5)
N2A-C3-C4 97(2) C72-C8-C82 104.1(5)
N2-C3-C1 102.2(6) N7-011-C7 115.9(5)
N2-C3-C4 108.0(6) C5-0O16-N8 112.3(7)
0O7-N4-08 129.2(9) -
Table S1I0  Bond Lengths for 3
Parameter Length/A Parameter Length/A
O(1)-N(1) 1.410(3) N(4)-0(10) 1.412(3)
O(1)-C(1) 1.453(4) N(4)-0(11) 1.151(4)
N(1)-0(2) 1.182(4) N(4)-0(12) 1.181(3)
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N(1)-0(3) 1.190(4) C4)-C(5) 1.526(4)
C(1)-C(2) 1.522(5) C(4)-N(6) 1.465(4)
C(1)-C(8) 1.531(4) N(5)-N(6) 1.352(4)
N(2)-0(4) 1.416(4) N(5)-0(14) 1.218(4)
N(2)-0(5) 1.177(4) N(5)-0(15) 1.190(4)
N(2)-0(6) 1.128(3) C(5)-C(6) 1.535(4)
C(2)-C(3) 1.522(4) C(5)-0(7) 1.439(4)
C(2)-0(13) 1.431(4) N(6)-C(8) 1.472(4)
N(@3)-0(7) 1.422(4) C(6)-C(7) 1.516(4)
N(3)-0(8) 1.192(5) C(6)-0(13) 1.436(4)
N(3)-0(9) 1.198(4) C(7)-C(8) 1.530(4)
C(3)-0(4) 1.441(4) C(7)-0(10) 1.454(4)
C(3)-C4) 1.528(4)
Table S11 ~ Bond Angle for 3
Parameter Angle/ Parameter Angle/*
N(1)-O(1)-C(1) 115.1(2) N(6)-C(4)-C(3) 105.9(2)
0O(2)-N(1)-0(1) 118.6(3) N(6)-C(4)-C(5) 109.2(2)
0O(2)-N(1)-0(3) 129.7(3) O(14)-N(5)-N(6) 118.0(3)
0O(3)-N(1)-0(1) 111.6(3) O(15)-N(5)-N(6) 117.9(3)
O(1)-C(1)-C(2) 110.9(2) O(15)-N(5)-0(14) 124.1(3)
O(1)-C(1)-C(8) 104.7(3) C(4)-C(5)-C(6) 107.9(2)
C(2)-C(1)-C(8) 108.4(2) O(7)-C(5)-C(4) 110.8(3)
O(5)-N(2)-0(4) 117.2(3) O(7)-C(5)-C(6) 105.7(2)
0(6)-N(2)-0(4) 114.8(3) C(4)-N(6)-C(8) 118.0(2)
0(6)-N(2)-0(5) 128.0(4) N(5)-N(6)-C(4) 120.5(2)
C(1)-C(2)-C(3) 110.3(2) N(5)-N(6)-C(8) 119.8(2)
O(13)-C(2)-C(1) 108.0(2) C(7)-C(6)-C(5) 111.3(2)
O(13)-C(2)-C(3) 110.8(2) O(13)-C(6)-C(5) 108.3(2)
O(8)-N(3)-0(7) 111.93) O(13)-C(6)-C(7) 109.7(2)
O(8)-N(3)-0(9) 130.7(4) N(3)-O(7)-C(5) 113.6(2)
0(9)-N(3)-0(7) 117.4(3) C(6)-C(7)-C(8) 108.9(2)
C(2)-C(3)-C(4) 108.9(2) 0O(10)-C(7)-C(6) 105.7(2)
0(4)-C(3)-C(2) 109.8(3) O(10)-C(7)-C(8) 110.2(2)
0(4)-C(3)-C(4) 105.7(2) N(6)-C(8)-C(1) 108.5(2)
N(2)-0(4)-C(3) 115.7(2) N(6)-C(8)-C(7) 106.2(2)
O(11)-N(4)-0(10) 118.03) C(7)-C(8)-C(1) 107.7(2)
O(11)-N(4)-0(12) 129.3(3) N(4)-0(10)-C(7) 114.8(2)
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12

0(12)-N(4)-0(10) 112.6(3) C(2)-0(13)-C(6) 113.8(2)
C(5)-C(4)-C(3) 108.0(2) --
Table S12  Bond Lengths for 4
Parameter Length/A Parameter Length/A
01-C3 1.433(4) C3-C4 1.517(5)
01-C7 1.421(4) 04-N5 1.181(4)
NI1-C1 1.458(4) N4-011 1.409(4)
NI1-N2 1.361(4) N4-012 1.175(4)
N1-C5 1.486(5) N4-013 1.182(4)
CI1-C8 1.531(4) 05-N6 1.417(4)
02-C4 1.447(4) C5-Co 1.521(6)
O2-N5 1.408(4) 06-N6 1.160(5)
N2-O14 1.215(4) No6-07 1.193(5)
N2-015 1.204(4) Co6-C7 1.512(5)
C2-C3 1.525(4) C6-011 1.480(5)
C2-05 1.437(4) C7-C8 1.527(5)
N3-08 1.428(4) 08-C8 1.437(4)
Table S13  Bond Angle for 4
Parameter Angle/” Parameter Angle/®
C7-01-C3 113.4(2) N6-05-C2 114.93)
CI-N1-C5 120.2(3) 03-N5-02 111.4(3)
N2-N1-C1 121.0(3) 04-N5-03 130.03)
N1-C1-C2 106.1(3) N1-C5-C4 109.1(3)
N1-C1-C8 107.9(3) N1-C5-C6 104.1(3)
C2-C1-C8 108.0(3) C6-C5-C4 106.2(4)
N5-02-C4 115.2(3) 06-N6-05 118.3(3)
0O14-N2-N1 118.3(3) 06-N6-07 130.4(4)
0O15-N2-N1 116.9(3) 07-N6-05 111.3(4)
015-N2-0O14 124.8(3) C7-C6-C5 109.03)
C1-C2-C3 109.3(3) 011-C6-C5 107.5(3)
05-C2-Cl 105.9(3) 011-Co6-C7 108.3(3)
05-C2-C3 109.9(3) 01-C7-Cé 109.1(3)
09-N3-08 117.5(4) 01-C7-C8 108.6(2)
010-N3-09 130.6(4) C6-C7-C8 114.3(3)
01-C3-C4 107.6(3) N3-08-C8 113.5(3)
C4-C3-C2 111.3(3) C7-C8-C1 106.6(3)



012-N4-011
012-N4-013
013-N4-011
02-C4-C5
C3-C4-C5
C6A-C4-02
C6A-C4-C3

112.43)
130.5(3)
117.13)
102.6(3)
107.7(3)
125.6(7)
113.9(7)

08-C8-Cl1
08-C8-C7
C4-C6A-0O11
C5A-C6A-011
NI1-C5A-C7
C6A-C5A-N1
C6A-C5A-C7

110.3(3)
105.7(3)
127.8(12)
93.0(11)
113.5(9)
100.9(12)
97.4(12)
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4. NMR Spectra of compounds
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Fig. S6  'H NMR spectrum of compound 7 (CDCl;, 500 MHz)
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Fig. S7  3C NMR spectrum of compound 7 (CDCls, 126 MHz)
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Fig. S8  'H NMR spectrum of compound 1 (acetone-d6, 500 MHz)
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5. IR spectra of Compounds
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6. TG-DSC curves
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7. ESP-mapped vdW surfaces
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Fig.S33  ESP-mapped vdW surfaces of compound 1 (a), 2 (b), 3 (c) , 4 (d).
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