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Experimental Section

Preparation of electrolyte: The following chemicals were purchased: sodium
hexafluorophosphate (NaPF¢, Adamas), lithium hexafluorophosphate (LiPFg,
Adamas), Lithium bis (trifluoromethanesulfonyl) imide (LiTFSI, Adamas), Lithium
difluorosulfonylimide (LiFSI, Adamas), Lithium difluorophosphate (LiDFP, Adamas),
Lithium tetrafluoroborate (LiBF,;, Adamas), diglyme (G2, Adamas), sodium
tetrafluoroborate (NaBF,, Aladdin), hard carbon (HC, Kuraray). The 1M-BG2
electrolyte is prepared by dissolving 0.01 M NaBF4 into 10 mL of G2 solvent. The
preparation process for the IM-BG2-LP, IM-BG2-LTF, 1IM-BG-LF, IM-BG2-LD and
IM-BG2-LBF electrolytes involves the addition of 1.5 mM of compounds LiPFg,
LiTFSI, LiFSI, LiDFP and LiBF, to 10 mL of DEGDME solvent containing 0.01 M
NaBF,, respectively.

Preparation of electrode:

Electrodes for Coin Cells: The NFPP cathode was prepared with a mass ratio of 85%
NFPP, 8% PVDF, and 7% Super-P carbon, achieving a loading of 3.8-4.0 mg-cm™.
The HC anode was fabricated with a mass ratio of 80% HC, 10% PVDF, and 10%
Super-P carbon, with a loading of 1.0~1.2 mg-cm™2. All symmetric and hal cells were
assembled using a PP/PE-based separator in the form of CR2016.

Electrodes for Pouch Cells: The NFPP cathode was composed of 93% NFPP, 4%
PVDF and 3% Super-P carbon by weight, with an NFPP loading of approximately
13.6-14.5 mg-cm™. The HC anode consisted of 95% HC, 1.5% CMC, 2.5% SBR, and

1% Super-P carbon. Prior to use, CMC and SBR binders were dispersed in water,



resulting in an HC loading of around 6 mg-cm™. The N/P capacity ratio for the
NFPP|HC pouch cells was 1.15. All cells were assembled in an Ar-filled glovebox (O-
< 0.1 ppm, H20 < 0.1 ppm).

Material characterizations: Microscopic imaging was performed with scanning
electron microscopy (SEM, HITACHI SU3800), transmission electron microscopy
(TEM, Thermo Scientific Talos F200X G2), and atomic force microscopy (AFM,
Oxford MFP-3D). Spectroscopic analysis was conducted with Raman spectroscopy
(Renishaw inVia Qontor), Fourier-transform infrared spectroscopy (FTIR,
SHIMADZU IRAffinity-1S), and nuclear magnetic resonance (NMR, Bruker
AVANCE NEO 700 MHz). The surface chemistry of the cycled electrodes was
examined using X-ray photoelectron spectroscopy (XPS, SHIMADZU Kratos AXIS
UltraDLD) and time-of-flight secondary ion mass spectrometry (TOF-SIMS, ION TOF
TOF SIMS 5-100).

Electrochemical measurements: Electrochemical impedance spectroscopy (EIS) was
performed with an electrochemical workstation (Princeton VersaSTAT 4), over a
frequency range of 10 mHz to 1 MHz. The C-rate was defined as 1C = 100 mA/g. The
Na||Na symmetric cells were charged and discharged at a current density of 0.5~7
mA/cm?, with a capacity of 0.5~7 mAh/cm?.

Additional remarks: Electrochemical tests were performed at 25°C, unless otherwise

stated.
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Figure S1. (a) Distribution diagram of electrostatic potential for various solvation.
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Figure S2. Na* radical distribution functions (RDFs) from MD simulation of (a) 1M-
BG2 electrolyte and (b) IM-BG2-LP electrolyte.
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Figure S3. Snapshot and typical solvation structure obtained from MD simulation of
(a) IM-BG2 and (b) IM-BG2-LP electrolyte at -20°C.
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Figure S4. Solvation structure calculated by DFT: Changes in Free, CIP and AGGs
Ratios in various electrolytes with temperature.
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Figure S5. (a) The FT-IR spectra of C-O-C and (b) C-H stretching mode in various
electrolytes at 25 °C and -20 °C.
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Figure S6. Schematic illustration of the mechanism for mitigating battery polarization
through the synergistic interaction of cations and anions. (a) The voltage plateau in
Na|[Na symmetric cells during the initial cycle (a;,-a;.) and (az,-a.) after 2000
hours/battery failure with various electrolytes, measured at 25 °C and a current density
of 0.5 mA cm™ with a capacity of 0.5 mAh cm™. (b) The voltage plateau in Na|[Na
symmetric cells during the initial cycle (by,-bje) and (by,-bse) after 2000 hours/battery
failure with various electrolytes, measured at 25 °C and a current density of 1 mA cm™
with a capacity of 1 mAh cm. (¢) The voltage plateau in Na|[Na symmetric cells during
the initial cycle (cj,-cie) and (cia-Coe) after 2000 hours/battery failure with various
electrolytes, measured at 25 °C and a current density of 3 mA cm™ with a capacity of 3
mAh cm?2.
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Figure S7. The voltage plateau in Na||Na symmetric cells during the initial cycle after
2000 hours/battery failure in 1M-BG2-LBF electrolyte, measured at 25 °C and a current
density of (a) and (b) 0.5 mA c¢m? with a capacity of 0.5 mAh cm™. (c) and (d) 1 mA
cm? with a capacity of 1 mAh cm™. (e) and (f) 3 mA c¢cm™ with a capacity of 3 mAh
cm2.
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Figure S8. SEM images of Na etl eletrdes in various electrolytes after 100 cycles
with a capacity of 3 mAh cm at 25 °C and a current density of 3 mA cm2.
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Figure S9. Cycling performance of Na||Na symmetrical cells with various electrolytes
at 25 °C: (a) Cycling performance at a current density of 0.5 mA c¢cm™ with a capacity
of 0.5 mAh cm? and (b) the corresponding voltage plateau after cycling for 5500h.
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Figure S10. Cycling performance of Na||Na symmetrical cells with various electrolytes
at 25 °C: (a) Cycling performance at a current density of 1 mA c¢cm™ with a capacity of
1 mAh cm? and (b) the corresponding voltage plateau after cycling for 3000h.
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Figure S11. Cycling performance of Na||Na symmetrical cells with various electrolytes
at 25 °C: (a) Cycling performance at a current density of 3 mA c¢cm™ with a capacity of
3 mAh cm and (b) the corresponding voltage plateau after cycling for 2000h.
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Figure S12. (a) The voltage plateau at -20 °C under a current density of 0.5 mA cm
with a capacity of 0.5 mAh cm after cycling for 5000h; (b) The voltage plateau at -20
°C under a current density of 1 mA cm with a capacity of 1 mAh cm™ after cycling
for 2156h; (c) The voltage plateau at -20 °C under a current density of 2 mA c¢cm-? with
a capacity of 2 mAh cm? after cycling for 100h.
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Figure S13. The overpotential of various electrolytes at at -20 °C and 25 °C.
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Figure S14. (a) Cycling performance of Na||Na symmetrical cells in 1M-BG2-LP
electrolyte at 25 °C at a current density of 0.5~7 mA cm with a capacity of 0.5~7 mAh
cm
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Figure S15. (a) Nyquist plots of the Na|[Na symmetric cells before and after cycling
for 100 h in various electrolytes (the inset is the equivalent circuit used for fitting the
Nyquist plots, where Rgg; and Ry are respectively SEI resistance and charge-transfer
resistance) and (b) the corresponding resistance (Rgg; and R) of fitting.
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Figure S16. (a) Nyquist plots of the Na|[Na symmetric cells in IM-BG2-LP electrolyte
during cycling. (b) The Rgg; and R, of fitting of the Na||Na symmetric cells in IM-BG2-
LP electrolyte during cycling.
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Figure S17. The Rgg; and R of fitting of the Na|[Na symmetric cells in 1M-BG2-LP
electrolyte at different temperatures.



Figure S18. Nyquist plots of the Na||Na symmetric cells in IM-BG2 electrolyte during
cycling.
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Figure S19. a) Changes in XPS spectra of Cls, Fl1s, and P2p on the Na metal
electrode after 100 cycles (symmetric Na|Na cells) in IM-BG2-LP electrolyte at 25
°C, with Argon ion-beam sputtering time. b) Contents of Na, F, B, C, and P elements

in the SEI on the Na metal electrode after 100 cycles (symmetric Na|[Na cells) in 1M-
BG2-LP electrolyte at 25 °C.
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Figure S20. Electrochemical performance of HC||Na half cells: a) Nyquist plots of the
HC||Na cells after 10 cycles in various electrolytes. Voltage profiles of Galvanostatic
charge and discharge in b) IM-BG2-LP electrolyte and c¢) 1M-BG2 electrolyte at 25 °C
and -20 °C.
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Figure S21. Electrochemical performance of HC||Na half cells: (a) Long-term cycling
performance at 25 °C and 1C (HCJ|Na). (b) Rate capability at 25 °C and (c) the
corresponding charge-discharge curves.
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Figure S22. Long-term cycling performance at -20 °C and 1C (HC||Na).



Y]

6004
.5 Ah

4004 I 1M-BG-LP

200

Capacity (mAh)

25°C, 1C NFPP|[HC
0

0 500 1000

1500

Cycle Number

Figure S23. Cycling performance of NFPP|HC pouch cells: (a) Long-term cycling

performance at 25 °C and 1C. (b) HRTEM characterization of the SEI on the HC
electrode cycled in IM-BG2-LP electrolyte at 25 °C.
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Figure S24. Cycling performance of NFPP|HC pouch cells: (a) Long-term cycling
performance at -20 °C and 0.5C. (b) HRTEM characterization of the SEI on the HC
electrode cycled in IM-BG2-LP electrolyte at -20 °C. (c) The pouch cells of 0.5Ah.
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Figure S25. (a) Young's modulus of tangents and (b) height distribution of tangents.



