Supporting Information

Anion-Cation Synergistic Interactions for Low-Temperature and

Fast-Charging Performance in Sodium Batteries

Yixing Shen^{ab}, [‡] Jipeng Xu^c, [‡] Yana Li^d, [‡] Haiying Che^{*b}, Shuzhi Zhao^a, Muhammad Ishaq^d, Maher Jabeen^b, Yunlong Zhang^{ab}, Jiafang Wu^e, Jingkun Li^c, Cheng Lian^c, Zi-Feng Ma^{*abd}

^aShanghai Electrochemical Energy Devices Research Center, Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

^bZhejiang Natrium Energy Co., Ltd, Shaoxing, Zhejiang, 312300, China ^cSchool of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China

^dShaoxing Research Institute of Renewable Energy and Molecular Engineering, Shanghai Jiao Tong University, Shaoxing, Zhejiang, 312300, China

^eNanjing Normal University, Nanjing, Jiangsu, 210023, China *Address correspondence to: zfma@sjtu.edu.cn

Experimental Section

Preparation of electrolyte: The following chemicals were purchased: sodium hexafluorophosphate (NaPF₆, Adamas), lithium hexafluorophosphate (LiPF₆, Adamas), Lithium bis (trifluoromethanesulfonyl) imide (LiTFSI, Adamas), Lithium difluorosulfonylimide (LiFSI, Adamas), Lithium difluorophosphate (LiDFP, Adamas), Lithium tetrafluoroborate (LiBF₄, Adamas), diglyme (G2, Adamas), sodium tetrafluoroborate (NaBF₄, Aladdin), hard carbon (HC, Kuraray). The 1M-BG2 electrolyte is prepared by dissolving 0.01 M NaBF4 into 10 mL of G2 solvent. The preparation process for the 1M-BG2-LP, 1M-BG2-LTF, 1M-BG-LF, 1M-BG2-LD and 1M-BG2-LBF electrolytes involves the addition of 1.5 mM of compounds LiPF₆, LiTFSI, LiFSI, LiDFP and LiBF₄ to 10 mL of DEGDME solvent containing 0.01 M NaBF₄, respectively.

Preparation of electrode:

Electrodes for Coin Cells: The NFPP cathode was prepared with a mass ratio of 85% NFPP, 8% PVDF, and 7% Super-P carbon, achieving a loading of 3.8–4.0 mg·cm⁻². The HC anode was fabricated with a mass ratio of 80% HC, 10% PVDF, and 10% Super-P carbon, with a loading of 1.0~1.2 mg·cm⁻². All symmetric and hal cells were assembled using a PP/PE-based separator in the form of CR2016.

Electrodes for Pouch Cells: The NFPP cathode was composed of 93% NFPP, 4% PVDF and 3% Super-P carbon by weight, with an NFPP loading of approximately 13.6–14.5 mg·cm⁻². The HC anode consisted of 95% HC, 1.5% CMC, 2.5% SBR, and 1% Super-P carbon. Prior to use, CMC and SBR binders were dispersed in water,

resulting in an HC loading of around 6 mg·cm⁻². The N/P capacity ratio for the NFPP||HC pouch cells was 1.15. All cells were assembled in an Ar-filled glovebox (O₂ < 0.1 ppm, H₂O < 0.1 ppm).

Material characterizations: Microscopic imaging was performed with scanning electron microscopy (SEM, HITACHI SU3800), transmission electron microscopy (TEM, Thermo Scientific Talos F200X G2), and atomic force microscopy (AFM, Oxford MFP-3D). Spectroscopic analysis was conducted with Raman spectroscopy (Renishaw inVia Qontor), Fourier-transform infrared spectroscopy (FTIR, SHIMADZU IRAffinity-1S), and nuclear magnetic resonance (NMR, Bruker AVANCE NEO 700 MHz). The surface chemistry of the cycled electrodes was examined using X-ray photoelectron spectroscopy (XPS, SHIMADZU Kratos AXIS UltraDLD) and time-of-flight secondary ion mass spectrometry (TOF-SIMS, ION TOF TOF SIMS 5-100).

Electrochemical measurements: Electrochemical impedance spectroscopy (EIS) was performed with an electrochemical workstation (Princeton VersaSTAT 4), over a frequency range of 10 mHz to 1 MHz. The C-rate was defined as 1C = 100 mA/g. The Na||Na symmetric cells were charged and discharged at a current density of 0.5~7 mA/cm², with a capacity of 0.5~7 mAh/cm².

Additional remarks: Electrochemical tests were performed at 25°C, unless otherwise stated.

Figure S1. (a) Distribution diagram of electrostatic potential for various solvation.

Figure S2. Na⁺ radical distribution functions (RDFs) from MD simulation of (a) 1M-BG2 electrolyte and (b) 1M-BG2-LP electrolyte.

Figure S3. Snapshot and typical solvation structure obtained from MD simulation of (a) 1M-BG2 and (b) 1M-BG2-LP electrolyte at -20°C.

Figure S4. Solvation structure calculated by DFT: Changes in Free, CIP and AGGs Ratios in various electrolytes with temperature.

Figure S5. (a) The FT-IR spectra of C-O-C and (b) C-H stretching mode in various electrolytes at 25 $^{\circ}$ C and -20 $^{\circ}$ C.

Figure S6. Schematic illustration of the mechanism for mitigating battery polarization through the synergistic interaction of cations and anions. (a) The voltage plateau in Na||Na symmetric cells during the initial cycle $(a_{1a}-a_{1e})$ and $(a_{2a}-a_{2e})$ after 2000 hours/battery failure with various electrolytes, measured at 25 °C and a current density of 0.5 mA cm⁻² with a capacity of 0.5 mAh cm⁻². (b) The voltage plateau in Na||Na symmetric cells during the initial cycle $(b_{1a}-b_{1e})$ and $(b_{2a}-b_{2e})$ after 2000 hours/battery failure with various electrolytes, measured at 25 °C and a current density of 1 mA cm⁻² with a capacity of 1 mAh cm⁻². (c) The voltage plateau in Na||Na symmetric cells during the initial cycle $(c_{1a}-c_{1e})$ and $(c_{2a}-c_{2e})$ after 2000 hours/battery failure with various electrolytes, measured at 25 °C and a current density of 1 mA cm⁻² with a capacity of 1 mAh cm⁻². (c) The voltage plateau in Na||Na symmetric cells during the initial cycle $(c_{1a}-c_{1e})$ and $(c_{2a}-c_{2e})$ after 2000 hours/battery failure with various electrolytes, measured at 25 °C and a current density of 1 mA cm⁻² with a capacity of 1 mAh cm⁻². (c) The voltage plateau in Na||Na symmetric cells during the initial cycle $(c_{1a}-c_{1e})$ and $(c_{2a}-c_{2e})$ after 2000 hours/battery failure with various electrolytes, measured at 25 °C and a current density of 3 mA cm⁻² with a capacity of 3 mAh cm⁻².

Figure S7. The voltage plateau in Na||Na symmetric cells during the initial cycle after 2000 hours/battery failure in 1M-BG2-LBF electrolyte, measured at 25 °C and a current density of (a) and (b) 0.5 mA cm⁻² with a capacity of 0.5 mAh cm⁻². (c) and (d) 1 mA cm⁻² with a capacity of 1 mAh cm⁻². (e) and (f) 3 mA cm⁻² with a capacity of 3 mAh cm⁻².

Figure S8. SEM images of Na metal electrodes in various electrolytes after 100 cycles with a capacity of 3 mAh cm⁻² at 25 °C and a current density of 3 mA cm⁻².

Figure S9. Cycling performance of Na||Na symmetrical cells with various electrolytes at 25 °C: (a) Cycling performance at a current density of 0.5 mA cm⁻² with a capacity of 0.5 mAh cm⁻² and (b) the corresponding voltage plateau after cycling for 5500h.

Figure S10. Cycling performance of Na||Na symmetrical cells with various electrolytes at 25 °C: (a) Cycling performance at a current density of 1 mA cm⁻² with a capacity of 1 mAh cm⁻² and (b) the corresponding voltage plateau after cycling for 3000h.

Figure S11. Cycling performance of Na||Na symmetrical cells with various electrolytes at 25 °C: (a) Cycling performance at a current density of 3 mA cm⁻² with a capacity of 3 mAh cm⁻² and (b) the corresponding voltage plateau after cycling for 2000h.

Figure S12. (a) The voltage plateau at -20 °C under a current density of 0.5 mA cm⁻² with a capacity of 0.5 mAh cm⁻² after cycling for 5000h; (b) The voltage plateau at -20 °C under a current density of 1 mA cm⁻² with a capacity of 1 mAh cm⁻² after cycling for 2156h; (c) The voltage plateau at -20 °C under a current density of 2 mAh cm⁻² after cycling for 100h.

Figure S13. The overpotential of various electrolytes at at -20 °C and 25 °C.

Figure S14. (a) Cycling performance of Na||Na symmetrical cells in 1M-BG2-LP electrolyte at 25 °C at a current density of $0.5 \sim 7 \text{ mA cm}^{-2}$ with a capacity of $0.5 \sim 7 \text{ mAh} \text{ cm}^{-2}$

Figure S15. (a) Nyquist plots of the Na||Na symmetric cells before and after cycling for 100 h in various electrolytes (the inset is the equivalent circuit used for fitting the Nyquist plots, where R_{SEI} and R_{ct} are respectively SEI resistance and charge-transfer resistance) and (b) the corresponding resistance (R_{SEI} and R_{ct}) of fitting.

Figure S16. (a) Nyquist plots of the Na||Na symmetric cells in 1M-BG2-LP electrolyte during cycling. (b) The R_{SEI} and R_{ct} of fitting of the Na||Na symmetric cells in 1M-BG2-LP electrolyte during cycling.

Figure S17. The R_{SEI} and R_{ct} of fitting of the Na||Na symmetric cells in 1M-BG2-LP electrolyte at different temperatures.

Figure S18. Nyquist plots of the Na||Na symmetric cells in 1M-BG2 electrolyte during cycling.

Figure S19. a) Changes in XPS spectra of C1s, F1s, and P2p on the Na metal electrode after 100 cycles (symmetric Na||Na cells) in 1M-BG2-LP electrolyte at 25 °C, with Argon ion-beam sputtering time. b) Contents of Na, F, B, C, and P elements in the SEI on the Na metal electrode after 100 cycles (symmetric Na||Na cells) in 1M-BG2-LP electrolyte at 25 °C.

Figure S20. Electrochemical performance of HC||Na half cells: a) Nyquist plots of the HC||Na cells after 10 cycles in various electrolytes. Voltage profiles of Galvanostatic charge and discharge in b) 1M-BG2-LP electrolyte and c) 1M-BG2 electrolyte at 25 °C and -20 °C.

Figure S21. Electrochemical performance of HC||Na half cells: (a) Long-term cycling performance at 25 °C and 1C (HC||Na). (b) Rate capability at 25 °C and (c) the corresponding charge-discharge curves.

Figure S22. Long-term cycling performance at -20 °C and 1C (HC||Na).

Figure S23. Cycling performance of NFPP||HC pouch cells: (a) Long-term cycling performance at 25 °C and 1C. (b) HRTEM characterization of the SEI on the HC electrode cycled in 1M-BG2-LP electrolyte at 25 °C.

Figure S24. Cycling performance of NFPP||HC pouch cells: (a) Long-term cycling performance at -20 °C and 0.5C. (b) HRTEM characterization of the SEI on the HC electrode cycled in 1M-BG2-LP electrolyte at -20 °C. (c) The pouch cells of 0.5Ah.

Figure S25. (a) Young's modulus of tangents and (b) height distribution of tangents.