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1. Experimental Section
1.1 Materials and methods

V,0s5 (99%), (N2Hs),SO4 (99.5%), FeSO4-7H,0O (99%) and Zn(CF;S03), (98.0%) were
purchased from Shanghai Macklin Biochemical Technology. LiOH-H,O (99%), HCI (36%)),
N-methylpyrrolidone (NMP, 99.9%), ethanol, and polyvinylidene fluoride (PVDF) were all
obtained from National Medicine Chemical Reagent Co, Ltd. Single-layer graphene oxide
(flake diameter: 0.5-5 pum, thickness: 0.8-1.2 nm, Xianfeng Nanotechnology Co., Ltd, China).

X-ray diffraction powder pattern (XRD) was obtained on a Miliflex diffractometer with
Cu-Ko radiation (A= 1.54 A) and recorded in the range of 5-60° with a scanning rate of 6°
min~!. The Raman scattering spectra were acquired on a Renishaw InVia system (532 nm
Laser). The specific surface area and pore property of samples were obtained by the
multipoint Brunauer- Emmett-Teller (BET, ASAP2020HD8 Surface Area and Porosity
Analyzer) analysis based on the N, adsorption-desorption isotherms principle. X-ray
photoelectron spectroscopy (XPS, ESCALAB Xi) was gained with an Al-Ka radiation source.
The electron paramagnetic resonance (EPR) spectrum was obtained using Bruker EMXplus.
The morphology and microstructure of the samples were analyzed by scanning electron
microscopy (SEM, Zeiss/sigma 500) and transmission electron microscopy (TEM, JEOL
JEM-2100 F).
1.2 Synthesis
1.2.1. Synthesis of [Fe;V1304,(H,0)12(VO,)]:24H,0 (Fe;Vs)

Fe;V 3 was synthesized based on literature [1]. V,05 (5.4564 g, 0.03 mol) was dissolved in

distilled water (160 mL) and heated to 85 °C, and then the solution (36 mL) containing



LiOH-H,0 solution (2.5176 g, 0.06 mol) and (N,H5),SO4 (3.9036 g, 0.03 mol) was added.
Subsequently, the resulting solution was diluted to 300 mL and then the pH was adjusted to
4.6 with 2 M HCI. After that, FeSO4-7H,0 (4.1703 g, 0.015 mol) was added to the above
solution and stirred for 5 h. The final crystalline product was obtained by slow evaporation at
room temperature after 12 h.

1.2.2. Synthesis of [FesV5039(OH)o]-9H,0 (FeVO)

GO (0.02 g) was ultrasonically dispersed in distilled water, and the solution (60 mL) with
Fe;V g precursor (0.252 g) was added dropwise. The resulting suspension was transferred to a
100 mL Teflon-lined autoclave and maintained at 180 °C for 24 h. After cooling to room
temperature, the black FeVO-R was obtained.

As a comparison, FeVO-B was synthesized under the same conditions without adding GO.
1.3 Electrochemical tests

The cathode slurry was prepared by mixing the active materials, acetylene black, and
PVDF binder in a moderate amount of NMP solvent at a mass ratio of 7:2:1, then the obtained
slurry was coated on titanium foil (2 mm) with a mass loading of 1 mg cm™2 and dried in a
vacuum oven at 60 °C for 12 h. The button cells (CR2032) were assembled in air using zinc
foil as the anode, 2 M Zn(CF;S0s), as electrolyte, and glass fiber as separator. Constant
current charge-discharge tests were executed on a LAND CT2100A battery testing system in
the voltage range of 0.2-1.6 V. The cyclic voltammetry curves (CV) and electrochemical
impedance spectroscopy (EIS) were performed on the CHI 760E electrochemical workstation.
The Galvanostatic intermittent titration technique (GITT) was performed at 0.1 A g'! with a

constant current charge of 5 min and the relaxation of 10 min, severally.



2. Supplementary Measurement
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Figure S1. Experimental and simulated X-ray powder diffraction patterns for Fe;Vs.
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Figure S2. X-ray powder diffraction patterns for GO.
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Figure S3. XPS survey spectra of FeVO-R and FeVO-B.
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Figure S4. CV curves of FeVO-B at 0.4 mV s 1.
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Figure S5. Optical images of pristine FeVO-R and FeVO-B electrodes immersed in 2 M

Zn(CF;S0s3); electrolyte for 5d.
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Figure S6. CV curves of the FeVO-B at different scan rates.
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Figure S7. Relationship between log i and log v at specific peak currents for FeVO-B.
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Figure S8. Capacitive contribution at (a) 0.2 mV s'!, (b) 0.4 mV s, (¢) 0.6 mV s and (d) 0.8

mV s! for FeVO-R.



400

7' Q)

200 ~
6=10.49

100 L] L ] | ) | |
2 4 6 8 10
m-l/z (HZ) -1/2

Figure S9. Linear relationship between Z' and @ ” of FeVO-R and FeVO-B.



3. Theoretical calculations

All of the calculations are performed in the framework of the spin-polarized density
functional theory with the projector augmented plane-wave method, as implemented in the
Vienna ab initio simulation package (VASP) [2,3]. The generalized gradient approximation
(GGA) proposed by Perdew, Burke, and Ernzerhof (PBE) is selected for the exchange-
correlation potential [4,5]. The long-range van der Waals interaction is described by the DFT-
D3 approach [6]. The cut-off energy for plane wave is set to 480 eV. The energy criterion is
set to 107* eV in iterative solution of the Kohn-Sham equation. All the structures are relaxed
until the residual forces on the atoms have declined to less than 0.05 eV/A. Data analysis and
visualization are carried out with the help of VASPKIT [7] code and VESTA [8]. The
diffusion barrier of adsorbed hydrogen at different adsorption sites were explored by using the
Nudge Elastic Band (CI-NEB) method [9].
The adsorption energy Eads is expressed as:

AE.gs=FEa+g — Ea — EB

where Ea;pis the total energy of slab A model with B adsorption, E, is the energy of a A

slab, and Eg is that for a B molecule.

Figure S10. Theoretical models of FeVO.
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Figure S12. The migration pathways for Zn?* between layers in FeVO (a) and the

corresponding Zn?* diffusion barriers (b).
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4. Zinc ion storage mechanism
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Figure S13. All-elements XPS spectra of FeVO-R at different charging and discharging states.

Figure S14. SEM images of FeVO-R electrode charged to 1.6 V at 500™ (a), 800" (b), 1000t

(c), 1500™ (d), 2000t (e), 3000t (f) cycles.
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Figure S15. Diagram of Zn?' ion storage mechanism in FeVO-R.
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Table S1. Vanadium-based materials used as electrode materials for zinc-ion batteries.

. Capacity
Electrode materials Ref
0.1Ag! 02A¢g! 05Ag! 5A ¢!

This work 409 mAhg' 374 mAhg! 356mAhg! 208 mAhg!
CS@ZVO 323 mAhg! 278mAhg! 242mAhg’! 97 mAh g S10
Ag,V,0yy / 210mAhg!' 182mAhg! 111mAhg! S11
VN, Oy 310mAhg! 291 mAhg!' 276mAhg!' 204mAhg! S12
0,-ZVO 402mAhg! 365mAhg! 345mAhg’! / S13
Ko5sVOPO,4 1.5H,0 181 mAhg! 166 mAhg! 151mAhg?! 107mAhg! S14
V,0s@PEDOT 293 mAh g! / 224mAhg!' 110mAhg!' S15
VO@pAP 3833 mAhg! 331mAhg!' 276mAhg! 139mAhg! S16
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