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Experimental Section 

1. Synthetic procedure 

The target compounds were synthesized according to the previous reports [1,2] with some 

modifications and the NMR data is consistent with the reported data. 
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Scheme S1. Synthetic routes of p-PyPTZ, p-PzPTZ, and p-DzPTZ. 

2. Materials characterization 

1H and 13C NMR spectra were recorded using a 400 MHz Bruker AVANCE III 

spectrometer. The crystallographic data for p-PzPTZ (CCDC No. 2154745) was 

obtained from the Cambridge Crystallographic Data Centre. Single-crystal X-ray 

diffraction data (SCXRD) for p-PyPTZ and p-DzPTZ were collected using an XtaLAB 

SuperNova X-ray diffractometer. The powder X-ray diffraction (PXRD) patterns were 

recorded by Rigaku Smartlab9KW. For ex situ characterizations, all electrodes were 

galvanostatically charged and discharged to the corresponding states at 1C, followed 



by cell disassembly in an Ar-filled glove box. To remove residual electrolyte, the 

disassembled electrodes were rinsed three times with DME solution before further 

analysis. Attenuated total reflection-Fourier transform IR (ATR-FTIR) spectroscopy 

were obtained on a Nicolet IN10 FT- IR spectrometer. Electron paramagnetic resonance 

(EPR) spectra were recorded on Bruker EMX plus spectrometer. X-ray photoelectron 

spectroscopy (XPS) measurements were performed using an ESCALAB 250Xi 

spectrometer. Field emission scanning electron microscopy (FE-SEM) images were 

taken by a Regulus 8100 (HITACHI, Japan). In situ Raman spectra were recorded with 

a LabRAM HR spectrometer (Horiba) equipped with a confocal Raman microscope 

and an argon ion laser excitation source at 532 nm.  

3. Electrodes preparation 

For the half-cell preparation, the cathode materials were prepared by mixing organic 

active materials, conductive carbon black (Super P), and poly(vinylidene fluoride) 

(PVDF) binder at a weight ratio of 5:3:2. The components were then dispersed in an N-

methyl-2-pyrrolidone (NMP) solution and stirred for 2 hours at room temperature to 

form a homogeneous slurry. The resulting slurry was coated onto aluminum foil using 

a doctor blade technique, followed by dried in a blast drying oven for 8 h and further 

drying in a vacuum oven at 60 °C for 4 h. The cathodes were then punched into 10 mm 

diameter circular discs, with the active material mass loading ranging from 0.6 to 1.0 

mg cm-2. 

 

4. Electrochemical measurements 



Coin-type CR2032 cells were assembled for electrochemical measurements, utilizing 

lithium metal as the anode, organic electrodes as the cathode, 20 µL of 1 M LiPF6 in 

EC/DEC (v:v = 1:1) as the electrolyte, and Celgard 2400 polypropylene (PP) 

membranes as separators. The assembly process was conducted in an argon-filled glove 

box, with both water and oxygen content maintained below 0.1 ppm. Galvanostatic 

charge/ discharge measurements were performed using a LAND CT3002AU 

multichannel battery testing system.  Cyclic voltammograms (CV) were recorded using 

a CH Instruments 660 E electrochemical workstation. 

5. Calculation 

The Gaussian 09 program was used to perform the time-dependent density functional 

theory (TD-DFT) calculations. The molecular conformations and single-point energies 

of neutral molecules and radical cations were optimized at the m062x/6-31g* level of 

theory. Additionally, calculations of the lowest unoccupied molecular orbital (LUMO), 

highest occupied molecular orbital (HOMO), and electrostatic potential (ESP) was 

conducted. 

  



6. Experimental data 

 

PM-2S: C-H…S 2.978 Å 

 

p-PyPTZ: C-H…S 2.966 Å 

 
p-PzPTZ: C-H…S 2.929 Å 

 

 

p-DzPTZ: C-H…N 2.734 Å 

Figure S1. Intermolecular interactions in the single crystal structure of PM-2S, p-

PyPTZ, p-PzPTZ, and p-DzPTZ. 



 

Figure S2. Molecular packing in the single crystal structure of PM-2S (ρ=1.38 g/cm3).  

 

Figure S3. Molecular packing in the single crystal structure of p-PyPTZ (ρ=1.40 g/cm3).  

 

Figure S4. Molecular packing in the single crystal structure of p-PzPTZ (ρ=1.52 g/cm3).  

 

Figure S5. Molecular packing in the single crystal structure of p-DzPTZ (ρ=1.47 

g/cm3).  

 



 

Figure S6. Solubility tests of p-PyPTZ, p-PzPTZ, and p-DzPTZ electrodes (from left 

to right) in the electrolyte. 
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Figure S7. The differential capacity (dQ/dV) curves of p-PyPTZ, p-PzPTZ, and p-

DzPTZ electrodes at 1 C. 

 

Figure S8. SEM images of (a, e) PM-2S, (b, f) p-PyPTZ, (c, g) p-PzPTZ, and (d, h) p-

DzPTZ electrodes (a-d) in the pristine states and (e-h) after cycling. 
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Figure S9. Charge/discharge profiles and corresponding charge-discharge plateau 

voltage difference at different C-rates. 
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Figure S10. Charge/discharge profiles at 1 C at different temperatures. 
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Figure S11. The log relationship of peak current and scan rate of PM-2S electrode. 
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Figure S12. The log relationship of peak current and scan rate of p-PyPTZ electrode. 
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Figure S13. The log relationship of peak current and scan rate of p-PyPTZ electrode. 
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Figure S14. The electrostatic potential (ESP) of PM-2S, p-PyPTZ, p-PzPTZ and p-

DzPTZ molecules. 

294 291 288 285 282

Binding Energy (eV)

a

 

c

e

 

 

C 1s

 

Figure S15. Ex situ C 1s XPS spectra. 
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Figure S16. The X-ray photoelectron spectroscopy (XPS) full spectrum of p-PyPTZ. 

 

 

Figure S17. 1H NMR spectrum of p-PyPTZ. 

 

 

Figure S18. 1H NMR spectrum of p-PzPTZ. 

 



 

Figure S19. 1H NMR spectrum of p-DzPTZ. 

 

 

Figure S20. 13C NMR spectrum of p-PyPTZ. 

 

 

Figure S21. 13C NMR spectrum of p-PzPTZ. 



 

Figure S22. 13C NMR spectrum of p-DzPTZ. 

 

Table S1. The HOMO energy levels of PM-2S, p-PyPTZ, p-PzPTZ, and p-DzPTZ in 

different conformations. 

  PM-2S p-PyPTZ p-PzPTZ p-DzPTZ 

 eq-eq -4.90 -5.15   

HOMO (eV) ax-eq -4.79 -4.97  -4.93 

 ax-ax -4.60 -4.86 -5.03 -5.20 
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