Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Enhancing sodium storage performance of O3-type NaNi_{1/3}Fe_{1/3}Mn_{1/3}O₂ cathode through a one-step double modification strategy

Yan Wang,^a Mengjie Zhang, ^a You Shi, ^a Huan Liu,^{*b} Dan Sun,^{*a} Xiaobing Huang,^{*c} Ning Ding, ^a Yan Xu, ^a Yougen Tang, ^a Haiyan Wang,^{*a}

^aHunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R China ^bCollege of Materials Science and Engineering, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, P.R China ^cCollege of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, P.R China

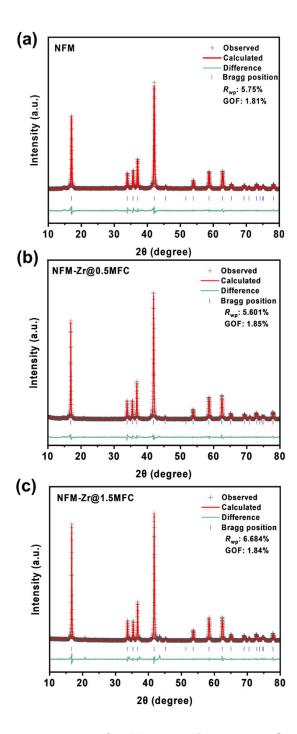


Fig. S1. XRD refinement patterns for (a) NFM, (b) NFM-Zr@0.5MFC and (c) NFM-Zr@1.5MFC

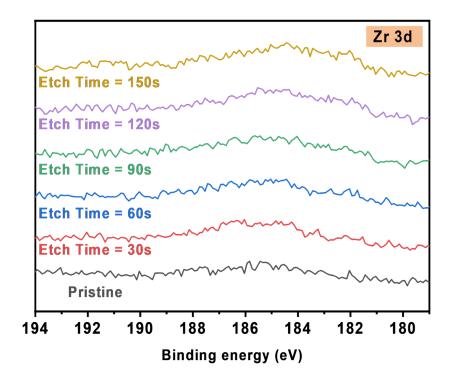


Fig. S2. Zr 3d XPS patterns at different etching depths

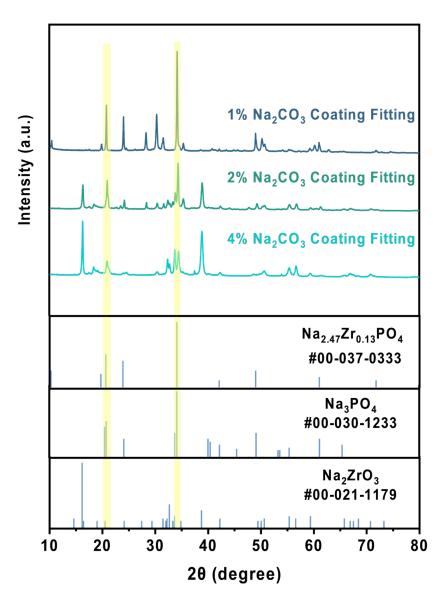


Fig. S3. XRD patterns of fitted cladding layers obtained by reacting different sodium carbonate contents (x=0.04, 0.02, 0.01 mol) with $ZrO(NO_3)_2 \cdot xH_2O$ (y=0.005 mol), $NH_4H_2PO_4$ (z=0.0075 mol) and their corresponding PDF cards. The yellow region represents the peak corresponding to the new appearance of NFM-Zr@1.0MFC.

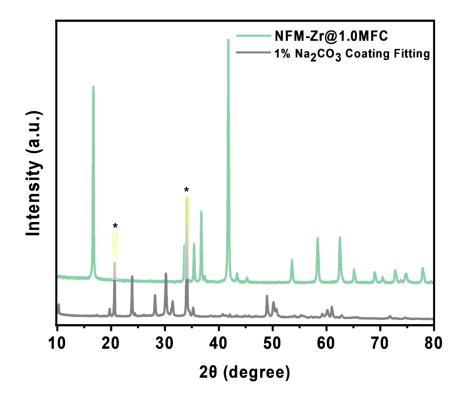


Fig. S4. MFC coating layer after 900°C/15 h heat treatment compared with NFM-Zr@1.0MFC

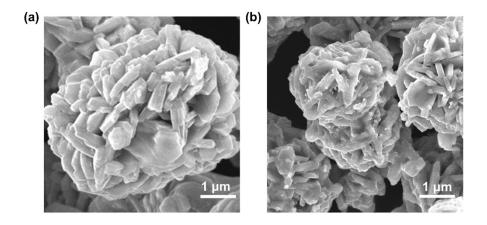


Fig. S5. SEM images of (a) NFM-Zr@0.5MFC and (b) NFM-Zr@1.5MFC.

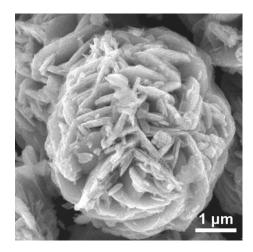


Fig. S6. SEM of $Ni_{1/3}Fe_{1/3}Mn_{1/3}(OH)_2$ precursor

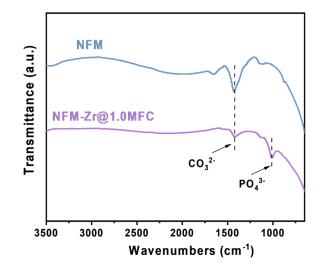


Fig. S7. Infrared spectra for NFM and NFM-Zr@1.0MFC

Surface Residual Alkali Analysis via Chemical Titration Method¹

1. Sodium Hydroxide (NaOH) Quantification

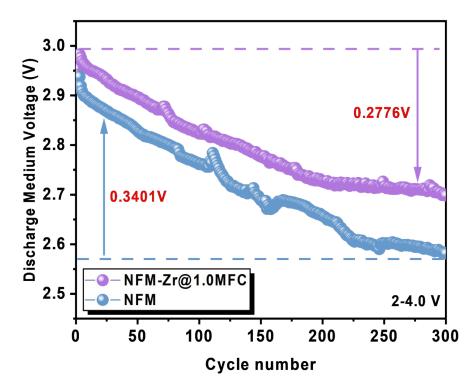
The NFM sample (0.5 g) was initially immersed in 10 mL of ethanol under vigorous stirring for 5 minutes to dissolve surface sodium hydroxide. The resulting suspension underwent filtration through a Buchner funnel to collect the NaOH-ethanol solution. The filtrate was quantitatively transferred to a 250 mL conical flask and diluted with

deionized water to a final volume of 200 mL. Methyl orange indicator was added, and the solution was titrated against standardized HCl until the endpoint transition from yellow to orange (pH 3.1-4.4). The NaOH content was calculated using the relationship (**Eq. S1**):

$$C_{NaOH} = \frac{V_{HCl} \times M_{HCl} \times M_{NaOH}}{m_{sample}} \tag{1}$$

Where V_{HCl} represents the consumed titrant volume, M_{HCl} the HCl molarity, M_{NaOH} the molecular weight of NaOH (40.00 g/mol), and m_{sample} the initial sample mass. The residual powder was collected for subsequent analysis.

2. Sodium Carbonate (Na₂CO₃) Determination


The filtered NFM powder was subsequently stirred with 10 mL of ethylene glycol in a beaker for 5 minutes to extract the surface carbonate material. After filtration, the Na₂CO₃ ethylene glycol solution was transferred to a clean conical flask and diluted to 200 mL with deionized water. Following addition of methyl orange indicator, the solution was titrated with standardized 0.1 M HCl until persistent orange coloration. The Na₂CO₃ concentration was determined using (**Eq. S2**):

$$C_{Na_2CO_3} = \frac{V_{HCl} \times M_{HCl} \times M_{Na_2CO_3}}{2 \times m_{sample}}$$
(2)

Where ${}^{M_{Na_2CO_3}}$ denotes the molecular weight of sodium carbonate (105.99 g/mol), All titrations were performed in triplicate with temperature control at 25±0.5°C.

Fig. S8. A schematic diagram depicting color changes before and after titration

Fig. S9. Decay of discharge medium voltage of NFM and NFM-Zr@1.0MFC after 300 cycles at 1C

The fitted linear relationship indicates that the Na⁺ diffusion coefficient (D) can be evaluated by the following Randles-Sevcik (**Eq. S3**):

$$Ip = 2.69 \times 10^5 n^{3/2} A D^{1/2} C v^{1/2}$$
(3)

In the equation, Ip represents the peak current at various scan rates (A), n denotes the number of electrons involved in the redox reaction, A signifies the contact area between the two electrodes, D is the diffusion coefficient of Na⁺, v represents the scan rate (V s⁻¹), and C is the concentration of Na⁺ participating in the reaction.

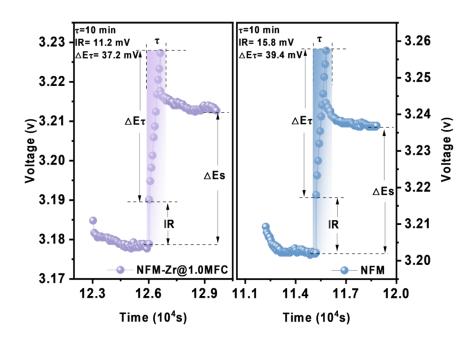


Fig. S10. An enlarged view of one GITT cycle for both NFM-Zr@1.0MFC and NFM

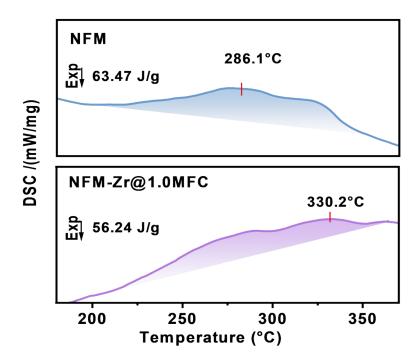
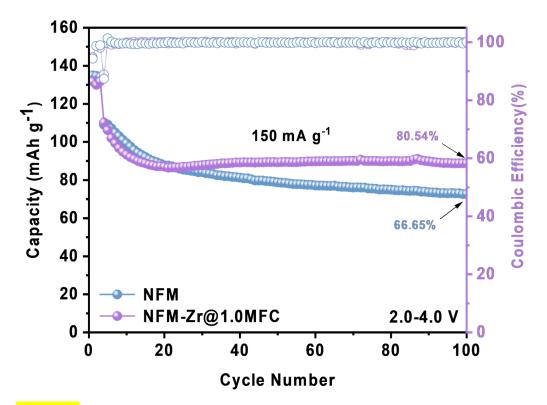



Fig. S11. DSC curves of NFM and NFM-Zr@1.0MFC in the charged state at 4.0 V.

Fig. S12. Materials for vacuum encapsulation

Fig. S13. The cycling performance of NFM and NFM-Zr@1.0MFC after one year of vacuum packaging.

Table S1. Crystal structure refinement of NFM, NFM-Zr@0.5MFC, NFM-Zr@1.0MFC and NFM-Zr@1.5MFC

	NFM	NFM-	NFM-	NFM-
		Zr@0.5MFC	Zr@1.0MFC	Zr@1.5MFC
a(Å)	2.98352	2.98179	2.9793	2.9759
c(Å)	16.0041	16.01381	16.03425	16.0406
	1			
c/a	5.36417	5.37053	5.38188	5.39016
V(Å ³)	123.373	123.304	123.262	123.025
S _{MO2} (Å)	2.23753	2.21412	2.17667	2.1672
I _{NaO2} (Å)	3.10722	3.12368	3.15804	3.17967
TM-O	2.05195	2.04676(4)	2.03755(3)	2.03131(5)
lenth(Å)	(3)			
Na-O	2.31789	2.32443(4)	2.33676(3)	2.34086(4)
lenth(Å)	(3)	11		
Rwp(%)	5.75	5.601	6.764	6.684
GOF	1.81	1.85	2.18	1.84

NFM					group: <i>R-³m</i>
Atom	Site	Х	Y	Ζ	Occ.
Na	3a	0	0	0	1.000
Ni	3b	0	0	0.5	0.3333
Fe	3b	0	0	0.5	0.3333
Mn	3b	0	0	0.5	0.3333
0	6c	0	0	0.23467	1.000

 Table S2. XRD refinement parameters for NFM

Table S3. XRD refinement parameters for NFM-Zr@1.0MFC

NFM-Zr@1.0MFC				Space	e group: <i>R-</i>
			m		
Atom	Site	Х	Y	Z	Occ.
Na	3a	0	0	0	1.000
Ni	3b	0	0	0.5	0.330
Fe	3b	0	0	0.5	0.332
Mn	3b	0	0	0.5	0.333
Zr	3b	0	0	0.5	0.007
0	6c	0	0	0.23644	1.000

	Na	Ni	Fe	Mn	Zr	Р
NFM	1.025	0.330	0.338	0.331		
NFM-	1.016	0.334	0.334	0.324	0.468%	0.678%
Zr@0.5MFC						
NFM-	1.003	0.329	0.331	0.322	0.973%	1.486%
Zr@1.0MFC						
NFM-	0.995	0.328	0.326	0.318	1.468%	2.176%
Zr@1.5MFC						

Table S4. Stoichiometry of the six as-prepared samples determined by ICP-OES

Table S5. Residual alkali titration results of NFM and NFM-Zr@1.0MFC

	рН	Na ₂ CO ₃	NaOH
		wt%	wt%
NFM	13.36	3.25	0.02
NFM-Zr@1.0MFC	13.03	2.36	0.01

The PH test is mainly referenced in ref 2 and the residual base titration procedure is referenced in ref 1.

Cathode materials	Voltage range [V]	Capacity retention	Ref.
$Na[Ni_{0.5}Co_{0.2}Mn_{0.3}]_{0.7}Ti_{0.3}O_2$	2.0-4.3 V	68.1%(300cycles)	3
$NaNi_{0.35}Fe_{0.2}Mn_{0.3}Ni_{0.1}Sb_{0.05}O_2$	1.9-4.1 V	76.0%(200cycles)	4
$NaNi_{1/3}Fe_{1/3}Mn_{1/3}O_2$	2.0-4.3 V	68.8%(200cycles)	5
$NaCaPO_4 @Na_{2/3} [Ni_{1/3}Mn_{2/3}]O_2$	2.5-4.3 V	74%(200cycles)	6
$Na_2Ti_6O_{13}@Na_{0.6}MnO_2$	2.0-4.1 V	78.8%(100cycles)	7
$NaPO_3 @Na_{2/3} [Ni_{1/3}Mn_{2/3}]O_2$	1.5-4.3 V	80%(100cycles)	8
NFM-Zr@1.0MFC	2.0-4.2 V	74.05%(300cycles)	This work

Table S6. Comparison of high-voltage electrochemical performance for various

 sodium layered cathode materials.

Table S7. The calculated ionic conductivity of potential coating compounds

Formula	Na ⁺ diffusion coefficient		
	$(cm^2 s^{-1})$		
Na ₂ CO ₃	0.716×10 ⁻⁷		
Na ₃ PO ₄	3.92×10 ⁻⁷		
Na ₂ ZrO ₃	10.7×10-7		
Na _{2.47} Zr _{0.13} PO ₄	5.93×10 ⁻⁵		

Table S8. Nyquist plot fitting results for NFM and NFM-Zr@1.0MFC electrodes at

 different temperatures

Temperatures		NFM		NFM-Zr@1.0MFC		
	$R_s(\Omega)$	$R_f(\Omega)$	$R_{ct}(\Omega)$	$R_s(\Omega)$	$R_{f}(\Omega)$	$R_{ct}(\Omega)$
25°C	2.378	297.01	112.64	2.275	249.73	117.47
40°C	2.275	151.69	57.06	2.208	109.27	49.66
60°C	2.127	140.75	34.64	2.106	91.04	29.4
80°C	1.847	160.18	29.92	1.62	104.92	30.24

References

- 1. Y. You, A. Dolocan, W. Li and A. Manthiram, *Nano Lett*, 2019, **19**, 182-188.
- M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha, K. Ahn, Y. Huang, S. J. Kang, J. Li and J. Cho, *Nature Energy*, 2021, 6, 362-371.
- L. Tan, Q. Wu, Z. Liu, Q. Chen, H. Yi, Z. Zhao, L. Song, S. Zhong, X. Wu and L. Li, *J Colloid Interface Sci*, 2022, 622, 1037-1044.
- 4. L. Liu, Y. Xin, Y. Wang, X. Ding, Q. Zhou, Z. Wang, W. Huang and H. Gao, Journal of Materials Chemistry A, 2024, **12**, 23495-23505.
- 5. X. Zhao, L. Zhang, X. Wang, J. Li, L. Zhang, D. Liu, R. Yang, X. Jin, M. Sui and P. Yan, *Journal of Materials Chemistry A*, 2024, **12**, 11681-11690.
- 6. C. H. Jo, J. H. Jo, H. Yashiro, S. J. Kim, Y. K. Sun and S. T. Myung, *Advanced Energy Materials*, 2018, **8**.
- Y. Liu, D. Wang, J. Liu, Y. Liu, S. Gao, Q. Hu, Z. Wu, X. Chen, B. Zhong and X. Guo, *Journal of Alloys and Compounds*, 2020, 849.
- J. H. Jo, J. U. Choi, A. Konarov, H. Yashiro, S. Yuan, L. Shi, Y. K. Sun and S. T. Myung, *Advanced Functional Materials*, 2018, 28.