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Electrical transport modeling

The density of state effective mass m* and Lorenz number L were calculated based on single Kane 

band (SKB) model by the following equations:1
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Hall carrier density
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Hall factor
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Lorenz number

                            (eq. S4)
𝐿 =

𝜅2
𝐵

𝑒2
[

2
0𝐹 1

−2 
0
0𝐹 1

−2 
−(

1
0𝐹 1

−2 
0
0𝐹 1

−2 
)2]

Carrier mobility

                           (eq. S5)
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Generalized Fermi integral

               (eq. S6)
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Here, kB is the Boltzmann constant, K is the the anisotropy factor,  is the generalized 
𝑛
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Fermi integral, Ξ is the deformation potential of materials, is the average longitudinal elastic 𝐶𝑙
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constant,  is the reduced carrier energy =E/kBT, m* is effective mass of charge carriers,  is 𝜀 𝜀 𝑚 ∗
𝐼

the inertial effective mass, and the reduced chemical potential is given by = EF/(kBT), where EF is 𝜉

the Fermi energy.
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Details of weighted mobility and quality factor calculations

Weighted mobility (μw) and quality factor (B) were calculated using the following 

equations:2,3

             (eq. S7)
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Supplementary details

Figure S1. Scanning electron microscopy images of (a) pristine PbSe, (b) PbSe0.996Br0.004, and (c) 
Pb0.9Sn0.1Se0.496Br0.004Te0.25S0.25.
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Figure S2. Thermoelectric performance of pristine PbSe. Temperature-dependent (a) electrical 
conductivity σ, (b) Seebeck coefficient S, (c) total thermal conductivity κtot, and (d) figure-of-
merit zT.
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Figure S3. Temperature-dependent lattice thermal conductivity κlat for pristine PbSe and 
Pb0.9Sn0.1Se0.5-xBrxTe0.25S0.25 (x = 0.002, 0.003, 0.004, and 0.005).
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Figure S4. Thermoelectric performance of n-type PbSe0.996Br0.004. Temperature-dependent (a) 
electrical conductivity σ, (b) Seebeck coefficient S, (c) total thermal conductivity κtot, and (d) 
figure-of-merit zT.
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Figure S5. Thermoelectric performance of p-type (GeTe)0.85(AgSbSeS)0.15 for the single-stage 
device construction. Temperature-dependent (a) electrical conductivity σ, (b) Seebeck coefficient 
S, (c) total thermal conductivity κtot. (d) Temperature-dependent figure-of-merit zT for n-type 
Pb0.9Sn0.1Se0.496Br0.004Te0.25S0.25 and p-type GeTe-based sample.
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Figure S6. Heat flow (Q) as functions of current (I) for the n-type 
Pb0.9Sn0.1Se0.496Br0.004Te0.25S0.25-based TE device.
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