Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Synergistic engineering of atomic disorder and porous architectures for ultralow lattice thermal conductivity and enhanced thermoelectric performance in n-type high-entropy lead chalcogenides

Qian Deng, a Xiaobo Tan, a Ruiheng Li, a Yin Xie, a Zhilong Zhao, a Jiaxing Luo, a and Ran Ang*a,b,c

^aKey Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and

Technology, Sichuan University, Chengdu 610064, China

^bCollege of Physics, Sichuan University, Chengdu 610064, China

^cInstitute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China

*Corresponding author and Email: rang@scu.edu.cn

Electrical transport modeling

The density of state effective mass m^* and Lorenz number L were calculated based on single Kane band (SKB) model by the following equations:¹

Seebeck coefficient

$$S = \frac{k_b}{e} \begin{bmatrix} 0 F_{-2}^{-1} \\ 0 F_{-2}^{-1} \\ 0 F_{-2}^{-1} \end{bmatrix}$$
(eq. S1)

Hall carrier density

$$n_{H} = \frac{1}{A} \left[\frac{2m^{*} k_{B}T}{\hbar^{2}}\right]^{3/2} {}_{0}^{0} F_{0}^{2/3}$$
(eq. S2)

Hall factor

$$A = \frac{3K(K+2)_{0}^{0}F_{-4}^{1/2} _{0}^{0}F_{0}^{2/3}}{(2K+1)^{2} _{0}^{0}F_{-2}^{1})^{2}}$$
(eq. S3)

Lorenz number

$$L = \frac{\kappa_B^2}{e^2} \begin{bmatrix} 0F_{-2}^1 \\ 0F_{-2}^1 \\ 0F_{-2}^1 \end{bmatrix} - (\frac{0F_{-2}^1}{0F_{-2}^1})^2$$
(eq. S4)

Carrier mobility

$$\mu = \frac{2\pi\hbar^4 eC_l}{m_l^* (2m^* k_B T)^{3/2} \Xi^2 {}^0_0 F^{3/2}_0}$$
(eq. S5)

Generalized Fermi integral

$${}_{0}^{n}F_{l}^{m}(\xi,\alpha) = \int_{0}^{\infty} (-\frac{\partial f}{\partial\varepsilon}\varepsilon^{n})(\varepsilon + \varepsilon^{2}\alpha)^{m}(1 + 2\varepsilon\alpha)^{l}d\varepsilon$$
(eq. S6)

Here, $k_{\rm B}$ is the Boltzmann constant, K is the the anisotropy factor, ${}_{0}^{n}F_{l}^{m}(\xi,\alpha)$ is the generalized Fermi integral, Ξ is the deformation potential of materials, C_{l} is the average longitudinal elastic

constant, ε is the reduced carrier energy $\varepsilon = E/k_{\rm B}T$, m^* is effective mass of charge carriers, m_I^* is the inertial effective mass, and the reduced chemical potential is given by $\xi = E_F/(k_{\rm B}T)$, where E_F is the Fermi energy.

Details of weighted mobility and quality factor calculations

Weighted mobility (μ_w) and quality factor (*B*) were calculated using the following equations:^{2,3}

$$\mu_{W} = \frac{3\sigma h^{2}}{8\pi e (2m_{e}k_{B}T)^{3/2}} \left[\frac{exp \left[\frac{|S|}{k_{B}/e} \right]}{1 + exp \left[-5 \left(\frac{|S|}{k_{B}/e} - 1 \right) \right]} + \frac{\frac{3}{\pi^{2}k_{B}/e}}{1 + exp \left[5 \left(\frac{|S|}{k_{B}/e} - 1 \right) \right]} \right]$$
(eq. S7)
$$B = \left(\frac{k_{B}}{e} \right)^{2} \frac{8\pi e (2m_{e}k_{B}T)^{3/2} \mu_{W}}{3h^{2} \kappa_{lat}} T$$
(eq. S8)

Supplementary details

Figure S1. Scanning electron microscopy images of (a) pristine PbSe, (b) $PbSe_{0.996}Br_{0.004}$, and (c) $Pb_{0.9}Sn_{0.1}Se_{0.496}Br_{0.004}Te_{0.25}S_{0.25}$.

Figure S2. Thermoelectric performance of pristine PbSe. Temperature-dependent (a) electrical conductivity σ , (b) Seebeck coefficient *S*, (c) total thermal conductivity κ_{tot} , and (d) figure-of-merit *zT*.

Figure S3. Temperature-dependent lattice thermal conductivity κ_{lat} for pristine PbSe and Pb_{0.9}Sn_{0.1}Se_{0.5-x}Br_xTe_{0.25}S_{0.25} (x = 0.002, 0.003, 0.004, and 0.005).

Figure S4. Thermoelectric performance of n-type PbSe_{0.996}Br_{0.004}. Temperature-dependent (a) electrical conductivity σ , (b) Seebeck coefficient *S*, (c) total thermal conductivity κ_{tot} , and (d) figure-of-merit *zT*.

Figure S5. Thermoelectric performance of p-type $(GeTe)_{0.85}(AgSbSeS)_{0.15}$ for the single-stage device construction. Temperature-dependent (a) electrical conductivity σ , (b) Seebeck coefficient *S*, (c) total thermal conductivity κ_{tot} . (d) Temperature-dependent figure-of-merit *zT* for n-type Pb_{0.9}Sn_{0.1}Se_{0.496}Br_{0.004}Te_{0.25}S_{0.25} and p-type GeTe-based sample.

Figure S6. Heat flow (*Q*) as functions of current (*I*) for the n-type $Pb_{0.9}Sn_{0.1}Se_{0.496}Br_{0.004}Te_{0.25}S_{0.25}$ -based TE device.

- 1. E. O. Kane, J. Phys. Chem. Solids, 1957, 1, 249-261.
- 2. G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder and C. N. Niu, *Adv. Mater.*, 2020, **32**, 2001537.
- 3. Y. Pei, H. Wang and G. J. Snyder, Adv. Mater., 2012, 24, 6125-6135.