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Supplementary experimental details

Materials Preparation

All PNC55, PNCF541, PNCF532, PNCF523, PNCF514 and PNF55 samples were 
prepared by a sol-gel complexing method. Taking PNCF532 as an example, firstly, 
stoichiometric amounts of metal nitrates Pr(NO3)36H2O, Ni(NO3)26H2O, 
Co(NO3)26H2O and Fe(NO3)39H2O were mixed with citric acid (CA) and glycine in 
DI water with the molar ratio of metal ions: CA: glycine = 1: 0.75: 0.75. After 
continuously heating and stirring the solution to evaporate the water, a dark purple gel 
was obtained. Subsequently, the gel was put into a drying oven at 260 °C for 4 h to get 
the precursor. Then, the precursor was calcined at 1000 °C for 2 h to obtain the final 
powder.

BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (BZCYYb) electrolyte powder was produced by a 
traditional solid-state reaction process.1 Say it carefully, raw BaCO3, ZrO2, CeO2, Y2O3 
and Yb2O3 according to the desired BCZYYb stoichiometry were mixed in absolute 
ethanol and ball-milled at 220 rpm for 24 h. After drying completely, the preliminary 
powder was uniaxially pressed into a pellet at 10 MPa and calcined at 1100 °C for 12 
h. Then, the fired pellet was ball-milled with a certain amount of absolute ethanol at 
400 rpm for 4 h. The pressing, calcination and ball-milling procedures were repeated 
twice to get a pure perovskite phase.

Cell Fabrication

Symmetrical cells were fabricated by coating cathode slurry on BZCYYb pellets. 
To prepare dense BZCYYb substrates, the BZCYYb powder was first mixed with 1 
wt% NiO (as a sintering aid) and adequate absolute ethanol, then ball-milled for 24 h, 
and followed uniaxially pressed into some pellets after being dried, sieved, and finally 
sintered at 1450°C for 5 h. After polishing the sintered pellets, the cathode slurry was 
painted on both sides of the dense electrolyte pellets. The slurry was made by mixing 
the sample powder and terpinol (with 5 wt% ethyl cellulose) with a mass ratio of 1:0.8. 
The cells were then co-fired at 950 °C for 2 h to form porous cathodes (with an active 
area of ~0.2826 cm2). Besides, the Ag paste was covered on the surface of cathodes for 
EIS tests.

The NiO-BZCYYb anode -supported half-cells were manufactured by tape casting 
and co-sintering. More details about the fabrication process can be found in our 
previous work.2 The cathode slurry was painted onto the electrolyte surface of the half-
cells (with an active area of ~0.196 cm-2), and then co-fired at 950 °C for 2 h to obtain 
the single cells. Also, the Ag paste and wires were used as current collectors.

Characterization and electrochemical tests 

The phase compositions of samples were detected by X-ray diffraction (XRD, 
Germany Bruker D8 Advance) with Cu Ka radiation. The microstructure and 
micromorphology of the cathodes and cells were observed by a cold field emission 
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scanning electron microscopy (SEM, Hitachi SU8010). Further, a transmission electron 
microscope (TEM, American FEI Tecnai G2 F20) equipped with energy-dispersive 
spectrum (EDS) analysis was performed to detect the crystal structure and elemental 
distribution of PNCF532 sample. To investigate the valence changes of Co and Fe in 
samples, X-ray photoelectron spectroscopy (XPS, American Thermo Scientific K-
Alpha) were conducted.

To measure the conductivity of PNC55 and PNCF532, the as-synthesized sample 
powder was mixed with 1% polyvinyl butyral and then uniaxially pressed into a 
rectangular bar. The bar can be used for testing after sintering at 1150 °C for 10 h. The 
conductivity curves of PNC55 and PNCF532 were tested in the air by the four-probe 
DC method. For cells testing, a multi-channel electrochemical workstation (AMETEK 
PARSTAT MC) was employed to perform the electrochemical impedance spectra 
(EIS), current density-voltage curves and long-term stability performance. Specifically, 
EIS curves were tested under open-circuit voltage (OCV) conditions in humidified air 
(3 vol% H2O). IV curves, as well as impedance spectra and stability of single cells were 
obtained by feeding 3 vol% H2O humidified hydrogen (at a rate of 30 mL min-1) in the 
anode and ambient air in the cathode. The humidity of 3 vol% is controlled by flowing 
the gas through a water-bubbler at room temperature (about 25 °C).
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Figure S1. EIS of the BZCYYb-based symmetrical cells with PNC55, PNCF541, 

PNCF532, PNCF523, PNCF514 and PNF55 cathodes at a temperature range from 

500 to 700 °C in wet air with 3 vol% H2O.
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Figure S2. The polyhedral crystal structure of orthorhombic perovskite 

PNCF532(Pbnm(62)).
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Figure S3. The SEM images of PNC55 and PNCF532 cathodes.
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Figure S4. HAADF and the X-ray EDS mapping of Pr, Ni, Co, Fe and O from the 

PNCF532 grain.
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Figure S5. Short stability (100 h) of Rp of BZCYYb symmetrical cells with PNC55 

and PNCF532 cathode, tested at 650 °C under flowing air with 3 vol.% H2O.



9

Figure S6. (a) Typical I-V-P curves of a single cell with PNC55 cathode measured at 

650-550 ℃ (b) Typical EIS curves of the single cell measured at 650-550 ℃ under 

OCV conditions. (c) A short-term (~50 h) stability evaluation of the PNC55 single-

cell measured at the constant current density of 0.5 A cm-2 and 650 ℃.



10

Table S1. The abbreviations of samples.

Sample composition Abbreviation

PrNi0.5Co0.5O3-δ PNC55

PrNi0.5Co0.4Fe0.1O3-δ PNCF541

PrNi0.5Co0.3Fe0.2O3-δ PNCF532

PrNi0.5Co0.2Fe0.3O3-δ PNCF523

PrNi0.5Co0.1Fe0.4O3-δ PNCF514

PrNi0.5Fe0.5O3-δ PNF55
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Table S2. XRD standard card and result of XRD refinement.

Sample
PDF 

number

Proportion 

(wt. %)

Space 

group
a (Å) b (Å) c (Å)

Volum

e
GOFa

PrNiO3 79-2453 --- Pbnm(62) 5.413 5.383 7.623 222.12 ---

PNCF532 --- 100 Pbnm(62) 5.423 5.413 7.655 224.67 1.099

a GOF stands for the goodness of fitting in XRD refinement, where a value of GOF less 

than 2 is a reliable fitting result.3
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Table S3. Performance comparisons of the peak power densities of the representative 

cathodes reported recently and PNCF532 (this work).

Cathode Electrolyte Anode
Electrolyte 

thickness(m)

Temperature

, oC

Pmax, 

W/cm2

Authors, 

Years

PrBa0.5Sr0.5Co1.5Fe0.5 O5+δ 

(PBSCF) 4
BCZYYb1711a

NiO-

BCZYYb1711
14.1

700

650

600

1.374 

1.048 

0.704

Seong et 

al.,2018

PrNi0.5Mn0.5O3−δ(PNM) + PrOx 5 BCZYYb1711
NiO-

BCZYYb1711
30

700

650

0.800

0.441

Chen et 

al.,2018

BaCo0.7(Ce0.8Y0.2)0.3O 3−δ(BCCY) 

6
BCZYYb1711

NiO-

BCZYYb1711
16.1

650

600

0.993 

0.730

Song et 

al.,2019

Ba(Co0.4Fe0.4Zr0.1Y0.1)0.95Ni0.05O3-

δ (BCFZYN) 7
BCZYYb1711

NiO-

BCZYYb1711
15

650

600

550

0.930

0.660

0.450

Liang et 

al., 2021

PrCo0.5Ni0.5O3−δ nanofiber 8
BCZYYb4411

b

NiO-

BCZYYb4411
10

600

550

0.607 

0.444

Ding et 

al.,2020

Ba0.9Co0.7Fe0.2Nb0.1O3-δ (BCFN) 9 BCZYYb1711
NiO-

BCZYYb1711
10

650

600

550

500

1.710

1.210

0.820

0.550

Pei et al., 

2022

PrNi0.7Co0.3O3-δ (PNC73) 10 BCZYYb4411
NiO-

BCZYYb4411
~10

600

550

500

450

400

350

0.950

0.680

0.450

0.320

0.230

0.140

Tang et 

al., 2022

PrNi0.4Co0.4Fe0.2O3-δ (PNCF) 11 BCZYYbFc
NiO-

BCZYYbF
15

700

650

600

0.790

0.620

0.420

Zhu et 

al., 2022

PNCF532 BCZYYb1711
NiO-

BCZYYb1711
~8

650

600

550

1.230

0.740

0.410

This 

work

a BZCYYb1711: BaZr0.1Ce0.7Y0.1Yb0.1O3-δ.
b BZCYYb4411: BaZr0.4Ce0.4Y0.1Yb0.1O3-δ.
c BZCYYbF: BaZr0.3Ce0.48Y0.1Yb0.1Fe0.02O3-δ.
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