Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

1	Supplementary Information
2	
3	Yin Peng ¹ , Rui Zhou ¹ , Liying Wang ¹ , Yang Gao ¹ , Xuesong Li ¹ , Xijia Yang ^{1*} , Wei
4	$L\ddot{u}^{1,2*}$
5	
6	¹ Key Laboratory of Advanced Structural Materials, Ministry of Education &
7	Advanced Institute of Materials Science, and School of Materials Science and
8	Engineering, Changchun University of Technology, Changchun 130012, China
9	² State Key Laboratory of Luminescence and Applications, Changchun Institute of
10	Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun
11	130033, China
12	E-mail: <u>lw771119@hotmail.com, yangxijia@ccut.edu.cn</u>
13	Fax: +86-0431-85716426; Tel: +86-0431-85716421
14	* To whom all correspondence should be addressed.
15	
16	

1 **Experimental section**

2 1. Preparation of black TiO₂:

TiO₂ and NaBH₄ were mixed in a 4:1 ratio in a grinding bowl, thoroughly blended,
and annealed at 400°C for 1 hour in a tube furnace. After centrifugation with deionized
water and ethanol, the powder yielded black TiO₂ (R-P25). Additionally, TiO₂ powder
was dispersed in a mixture of methanol and deionized water (volume ratio 7:3).
Following methods described in the literature, the mixture was irradiated using a Tisapphire laser system (Spectra-Physics, Spitfire ACE). After drying, laser-modified
black TiO₂ (L-P25) was obtained.

10 2. Preparation of photoanode

Mixtures of 0.4g each of R-P25 and L-P25 powders (in mass ratios of 3:7, 5:5, and 7:3 respectively) were prepared into slurries using the previously described method. These slurries were spin-coated onto FTO conductive glass and annealed at 450°C for a 30 minutes to obtain TiO₂ films.

The CdS/CdSe QD were sensitized onto the FTO/TiO_2 photoanode using a chemical bath deposition method. The FTO/TiO_2 photoanode was sequentially immersed in a methanol solution containing 0.06 M Cd(CH₃COO)₂ and a methanol solution containing 0.06 M Na₂S · 9H₂O. After soaking for 30 seconds, the photoanode was removed and rinsed appropriately with methanol. This process was repeated six times to complete the CdS quantum dot sensitization.

Next, in a three-neck flask, 25 mL of deionized water, 1.55 g Na₂SO₃, and 0.155
g Se powder were added, and the mixture was heated in an oil bath to 125°C until the

Se powder was completely dissolved. The temperature was then maintained at 125°C
for 2 h, after which the flask was removed from the oil bath and cooled to room
temperature. A solution containing C₆H₆NNa₃O₆·H₂O and Cd(CH₃COO)₂ in deionized
water was added, and the mixture was stirred before the FTO/TiO₂/CdS photoanode
was placed in it. The photoanode was then kept in the dark at 24°C in a water bath for
2 h.

Finally, a ZnS passivation layer was prepared. The prepared photoanode was
sequentially immersed in 0.1 M Zn(CH₃COO)₂ methanol solution and 0.1 M Na₂S
methanol-deionized water (V/V, 1:1) solution. After soaking for 60 s, the photoanode
was removed and rinsed with methanol. This process was repeated twice, and then the
photoanode was placed in a petri dish and stored in the dark.

According to the passivation layer design specifications, the target thickness range is 20-30 nm. The measured passivation layer thickness, characterized by transmission electron microscopy (TEM), is 21±1.5 nm¹, which meets the requirements of the work performed.

16 3. Synthesis of AM gel electrolytes

17 12 g AM were dispersed in 15 mL of deionized water, heated and stirred until fully
18 dissolved. After complete dissolution, 0.1 g of N, N'-(methylene) bisacrylamide and 0.2
19 g of ammonium persulfate were added. After stirring for several minutes, the mixture
20 became a viscous system. Subsequently, it was poured into a petri dish and left at room
21 temperature for 24 h to obtain a AM matrix.

22 To prepare the polysulfide electrolyte, sulfur powder and sodium sulfide were

dissolved in a mixture of deionized water and methanol. The electrolyte was then added
 to the AM matrix, allowed to fully absorb, resulting in the formation of the AM gel
 electrolyte.

4 4. Preparation of Carbon/Ti Counter Electrodes

5 The Ti mesh was cut into an appropriate size and placed in ethanol and acetone 6 respectively for ultrasonic cleaning. After the ultrasonic treatment, the Ti mesh was 7 rinsed with deionized water. The cleaned Ti mesh was then dried for later use.

8 Active carbon, conductive carbon black, and PVDF were mixed in a ratio of 8:1:1, 9 and NMP was added to thoroughly grind the mixture into a viscous slurry. The slurry 10 was then brushed onto the titanium mesh. After drying, the active carbon/Ti counter 11 electrode was obtained.

12 5. Characterization

13 The equipment used for experiments and data analysis in this research:

14 X-ray Diffraction (Rigaku XRD): λ = 0.15406 nm, tube current = 40 mA, diffraction
15 angle = 10°-80°; X-ray Photoelectron Spectroscopy (XPS, ESCALAB MkII); Field
16 Emission Scanning Electron Microscope (FESEM, S4800, Hitachi); UV/Visible/NIR
17 Spectrophotometer (UV-3150); Solar Simulator (Zolix Instruments Co., Ltd.): AM1.5,
18 light intensity = 100 mW/cm²; Transmission Electron Microscope (TEM, Talos F200):
19 Accelerating voltage = 200 kV; Electrochemical Workstation (Shanghai CHI660C).
20 These methods are used for parameter determination and structural analysis.

21 6. Analog calculation

1	Utilizing density functional theory calculations and molecular dynamics
2	simulations to compute the interactions between AM, NaS, S, and $\mathrm{H_2O}$. The wave
3	function expansion employed a cutoff energy of 500 eV, and the energy convergence
4	criterion was set to 10 ⁻⁶ eV to ensure high calculation precision. The exchange and
5	correlation terms were treated with the Generalized Gradient Approximation (GGA)
6	Perdew-Burke-Ernzerhof (PBE) functional. The Brillouin zone integrations were
7	carried out using a $3 \times 3 \times 2$ K-point grid. When constructing the simulation model, a 15
8	Å thick vacuum layer was set around the carbon-based materials to avoid interactions.
9	The study of the interactions between the polymer and water was conducted using the
10	Forcite module for molecular dynamics calculations and analysis.
11	
12	
13	
14	
15	
16	
17	
18	
19	

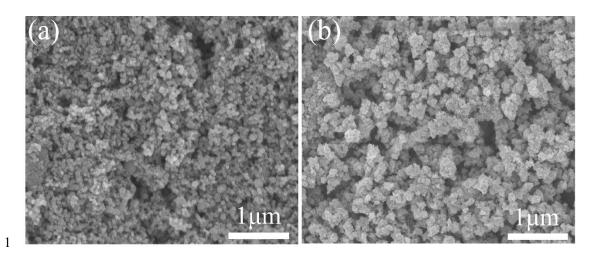
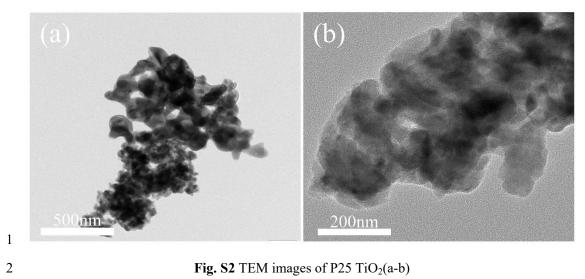



Fig. S1 SEM images in top view of two TiO_2 nanoparticle films(a-b)

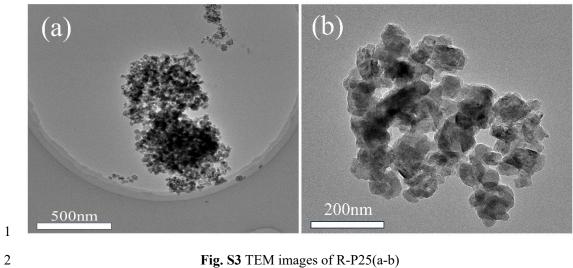


Fig. S3 TEM images of R-P25(a-b)

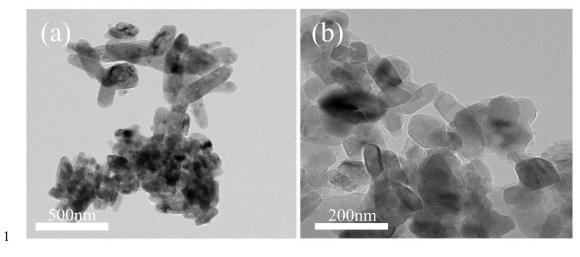
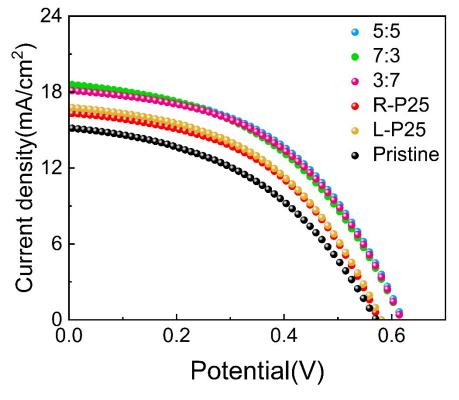



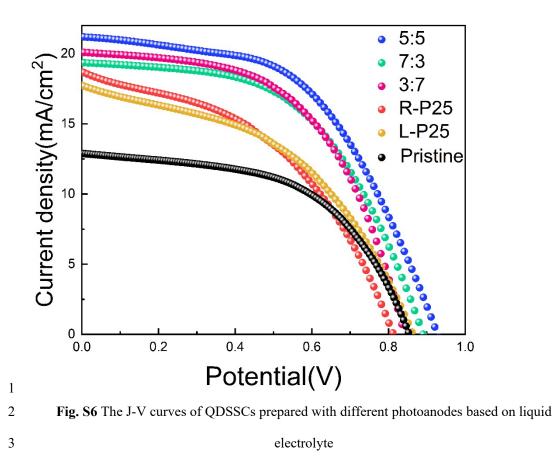
Fig. S4 The TEM images of L-P25 TiO₂(a-b)

1 The photoanodes were prepared using the pristine P25, L-P25, and R-P25. 2 Additionally, L-P25 and R-P25 were mixed in ratios of 3:7, 5:5, and 7:3 to prepare 3 photoanodes.

5 Fig. S5 The J-V curves of QDSSCs prepared using different photoanodes based on CuS CE.

6

4


7 Table S1. Performance parameters of five solar cells based on CuS

Sample	Jsc(mA/cm ²)	Voc(V)	FF(%)	PCE(%)
Pristine P25	15.23	0.57	43	3.80
R-P25	16.35	0.58	48	4.53
L-P25	16.84	0.58	47	4.58
3:7	18.52	0.60	46	5.35
5:5	18.34	0.61	48	5.47
7:3	18.70	0.60	45	5.28

8

9

10

5 Table S2. Performance parameters of five solar cells based on liquid electrolyte

Sample	Jsc(mA/cm ²)	Voc(V)	FF(%)	PCE(%)
Pristine P25	12.75	0.85	50	6.12
R-P25	17.93	0.81	46	7.14
L-P25	16.94	0.86	47	7.35
3:7	20.10	0.84	48	8.85
5:5	22.51	0.97	46	9.98
7:3	19.47	0.89	49	8.63

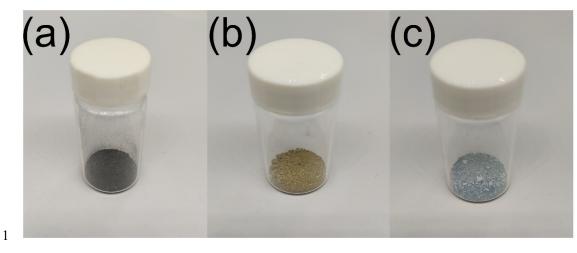


Fig. S7 Digital photos of black TiO_2 before(a) and after annealing (b, c).

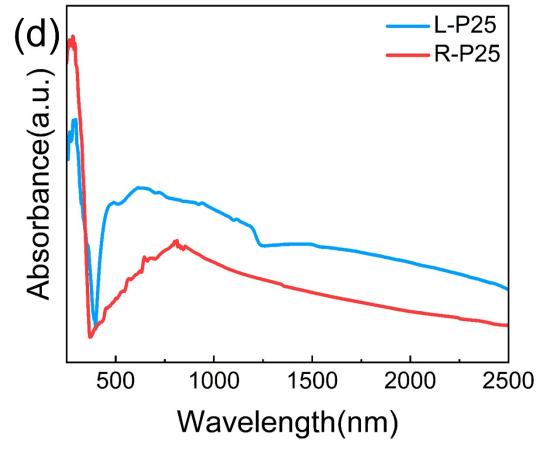


Fig. S8 The light absorption spectra of the two black TiO₂ powders after annealing.

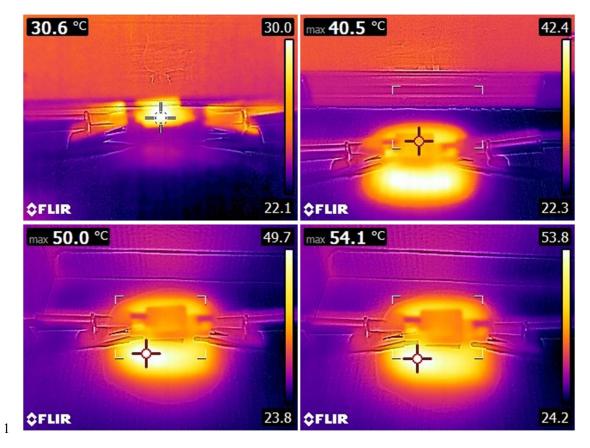


Fig. S9 Infrared thermal images at different temperatures.

Reference

2	1.	C. Zhou, Q. Chen, G. Wang, A. Guan, L. Zhou, N. Huang and J. Xu, Journal of
3		Electroanalytical Chemistry, 2016, 780, 271-275.