Supplementary Materials

S1 Materials characterizations

S2 The testing methods for TOC and COD

Fig. S1. The effect of different metal iron salts on the degradation ratio and k of TC,[TC]=50 mg/L; [Catalyst]=0.4 g/L;

Fig. S2. The effect of molar ratio of Fe³⁺to H₂BDC for the degradation ratio and *k* of TC, [TC]=50 mg/L; [Catalyst]=0.4 g/L;

Fig. S3. The effect of solvent thermal temperature on the degradation ratio and k of TC,[TC]=50 mg/L; [Catalyst]=0.4 g/L;

Fig. S4. The k value of TC degradation under different microwave powers.[TC]=50 mg/L; [Catalyst]=0.4 g/L;

Fig. S5. SEM image of the used $FBV_{0.4}$

Fig. S6. N₂ adsorption/desorption isotherm and pore size distribution graph of the used FBV_{0.4}

Table S1. List of experimental chemicals.

Table S2. Comparative study of metal-based catalysts in different literatures.

Table S3. The intermediate products of microwave catalytic degradation of TC

Table S4 The specific surface area and pore parameters of $\mathrm{FBV}_{0.4}$ before and after use

Table S5 Specifications of Microwave chemical reactor

S1 Materials characterizations

The N₂ adsorption/desorption isotherms were measured using a Bruna Emmett Taylor (BET Autosorb-1, USA), and the S_{BET} and pore size distribution of the catalysts were calculated. The chemical phase, composition, crystallinity and other characteristics of the samples were analyzed by X-ray diffraction (XRD, Empyrean, Netherlands). Scanning electron microscopy (SEM, Gemini Sigma, Germany) was used to observe the surface morphology and microstructure of the samples. X-ray photoelectron spectroscopy (XPS, K-Alpha, USA) was used to determine the composition, content and chemical valence states of the surface elements. Fourier transform infrared spectroscopy (FT-IR, Thermo Nicolet Is5, USA) was utilized to analyze the surface functional groups and chemical bonds. Electron paramagnetic resonance spectroscopy (EPR, A300, Germany) was conducted to confirm the existence of oxygen vacancy defects. The Bruker A300 spectrometer was used to record the electrons spin resonance (ESR, Germany) with 5, 5-dimethyl-1-pyrroline N-oxide (DMPO), 2, 2, 6, 6-tetramethylpiperidine-1-oxyl (TEMPO) as spin-trapped reagent under microwave irradiation. The UV-Vis diffuse reflectance spectra of the samples were measured using a UV-Vis-NIR spectrophotometer (3600 plus, Japan) to reveal the energy level structure of the catalyst.

S2 The testing methods for TOC and COD

S2.1 Analysis of TOC

The determination of TOC content was carried out using the TOC-L analyzer from Shimadzu, Japan. The sample was filtered through a 0.45 μ m membrane filter before analysis. The combustion temperature is maintained at 680°C, and platinum catalytic oxidation occurs. Calibration was carried out using potassium hydrogen phthalate standard (0-100 mg/L). The detection limit of the system is 4 μ g/L, and the relative standard deviation is less than 2%.

S2.2 Determination of COD

According to the different substrates of the wastewater, two methods are adopted: Actual wastewater: COD was determined by the permanganate index method in accordance with GB 11892-89 standard. Simply put, 100 mL of the sample was boiled with 10 mL of KMnO₄ and 5 mL of H_2SO_4 at 100°C for 10 min. Then titrate with Na₂S₂O₃ and perform blank correction.

Simulated wastewater: Quantitative analysis of COD was conducted using the Lianhua COD-580 portable rapid analyzer. The pre-calibrated instrument adopts sealed tube digestion, 165°C for 15 min, and spectrophotometric detection at 620 nm (range: 5-2000 mg/L COD).

Fig. S1.The effect of different metal iron salts on the degradation rate and k of TC

Fig. S2. The effect of molar ratio of Fe³⁺to H₂BDC for the degradation rate and k of TC

Fig. S3. The effect of solvent thermal temperature on the degradation rate and k of TC

Fig. S4. The k value of TC degradation under different microwave powers

Fig. S5. SEM image of the used $FBV_{0.4}$

Fig. S6. N_2 adsorption/desorption isotherm and pore size distribution graph of the used $FBV_{0.4}$

Experimental	Source	category	
chemical	Boulee	category	
ethanol (EtOH)	Tioniin Domoo Chomical Poogont Footory	۸D	
(99.7%)	Tanjin Damao Chemical Reagent Factory	AK	
isopropanol	Tioniin Euchen Chemical Descent Fostery	۸D	
(IPA) (99.7%)	Tanjin Fuchen Chemical Reagent Factory	AK	
р-			
benzoquinone (BQ)	Tianjin Fuchen Chemical Reagent Factory	AR	
(99.7%)			
silver nitrate	Tianjin Weichen Chemical Reagent Co.,	٨D	
(AgNO ₃) (99.8%)	Ltd	AK	
NaCl		AR	
Na ₂ CO ₃		AR	
NaHCO ₃	Tioniin Iromia Chamical Descent Co. Itd	AR	
Na_2SO_4	Tanjin kemio Chennear Keagent Co., Lid	AR	
NaNO ₃		AR	
NaOH		AR	
HNO ₃	Tianjin Damao Chemical Reagent Factory	AR	

Table S1. List of experimental chemicals.

		Reaction Conditions					
Catalyst	Technology	Catalyst dosage (g/L)	Concentration of TC (mg/L)	Degradation Ratio (%)	时间 (min)	Others	es
FBV _{0.4}	MW	0.4	50	98.32	10	P=480 W	This work
α -Bi ₂ O ₃ /CoFe ₂ O ₄ (BO/CFO)	MW	1	1	97.55	5	P=450 W	1
ZnO/CoFe ₂ O ₄ (ZO/CFO)	MW	1	1	88.23	5	P=450 W	1
Co@NCNTs-5	MW	1.5	20	99.5	6	P=520 W	2
CeNCN	Photocatalysis	0.4	10	80.09	60	$\lambda \ge 420 \text{ nm}$	3
MIL-MIL101Fe (NH ₂) @g-C ₃ N ₄ @CoFe ₂ O ₄ /GO	Photocatalysis	0.4	20	90	65	$\lambda > 420 \text{ nm}$	4
W-Zr-MOF-NH ₂ @TpTt- COF	Photocatalysis	0.3	20	90.14	40	λ < 420 nm	5
Fe-MIL-101	Photocatalysis	0.5	50	96.6	180	$\lambda > 420 \text{ nm}$	6
MIL-53(Fe, Al)	Photocatalysis	0.1	20	94.33	50	$\lambda = 365 \text{ nm}$	7

 Table S2. Comparative study of metal-based catalysts in different literatures.

ZnO/ Bi ₂ MoO ₆ /ZIF-67	photocatalysis	0.4	40	90.3	90	$\lambda = 420 \text{ nm}$	8
Bi ₃ O ₄ Br/NH ₂ -MIL-125							
(Ti)	photocatalysis	0.15	25	88.5	90	$\lambda = 357 \text{ nm}$	9
BOB/NMILT							
CuBTC/g-C ₃ N ₄	photocatalysis	0.1	20	97.4	60	UV	10

Table S3. The intermediate products of microwave catalytic degradation of TC

Number	m/z	Chemical	Name	Proposed structure		
	III/Z	Formula	Ivanic	T toposed structure		
тс	445	$C_{22}H_{24}N_2O_8$	Tetracycline	H ₃ C OH OH OH OH OH OH OH OH OH		
Τ1	396	C ₂₀ H ₂₅ NO ₇	Acetylated nitrous oxide of senecrafinine	OH CH2 NH2 OH OH OH		
T2	318	Benzoic acid,4-[(methoxycarbonyl)oxy]-, 4-ethoxyphenyl ester, 318 $C_{17}H_{16}O_6$ Carbonicacid, methyl ester, ester with p-ethoxyphenyl p-	OH CH ₂			
			Carbonicacid, methyl ester, ester with p-ethoxyphenyl p-	ОН		
				hydroxybenzoate (8CI)	~ ∬ ∫ ∬	

Methyl4-(4-ethoxyphenoxycarbonyl)phenyl carbonate

Т3	274	$C_{16}H_{16}O_4$	Benzaldehyde,4,5-dimethoxy-2-(phenylmethoxy)-; Benzaldehyde,2-(benzyloxy)-4,5	
T4	283	$C_{13}H_{18}N_2O_5$	Hydantoic acid;(S)-2-(Aminocarbonyl)-amino-3-	H ₃ C CH ₃ OH OH NH ₂
Т5	230	C ₁₀ H ₁₅ NO ₄	(R)-N-BOC-Propargylglycine;(R)-N-tert-Butoxycarbonyl-2-am	
Т6	432	$C_{21}H_{22}N_2O_8$	b-D-Glucopyranoside, 4-nitrophenyl2-(acetylamino)-2-deoxy-4,6-O- (phenylmethylene)-	
T7	387	C ₂₀ H ₁₉ NO ₇	Butanoic acid,2,3-bis(benzoyloxy)-4-(dimethylamino)-4-oxo-, (2S,3S)-	OH OH O OH O O
T8	330	$C_{18}H_{16}O_{6}$	Benzoic acid,2,3-dihydroxy-, 3-(1,3-dihydro-3-oxo-1- isobenzofuranyl)propyl ester (9CI)	ОН О ОН О

Т9	461	C ₂₂ H ₂₅ N ₂ O ₉	(4S,6S,12aS)-4-(dimethylamino)-3,6,10,11a,12,12a-hexahydroxy-6- methyl1,11-dioxo-1,4,4a,5,5a,6,11,11a,12,12a-decahydrotetracene-2- carboxamide	
T10	415	$C_{21}H_{22}N_2O_7$	Sancycline;(4S,4aS,5aR,12aS)-4-(Dimethyla)	H ₃ C OH H ₃ C OH OH OH OH OH OH
T11	183	C ₈ H ₉ NO ₄	3,4-Dimethoxynitrobenzene;1,2-Dimethoxy-4-nitrobenzene	O O O NH2
T12	145	C ₅ H ₈ O ₃	Methyl acetoacetate;3-Oxobutanoic acid methyl este	но
T13	79	C_6H_6	Benzene;1,3,5-Cyclohexatriene;Benzol	
T14	60	C ₃ H ₈ O	Isopropanol;2-Propanol;Isopropyl alcohol	ОН

	$\mathbf{S}_{\mathrm{BET}}$	Pore Volume	Average pore size
Catalyst	$(\mathbf{m}^2 \cdot \mathbf{g}^{-1})$	$(cm^3 \cdot g^{-1})$	(nm)
Fresh FBV _{0.4}	918.214	0.5329	2.3214
Used FBV _{0.4}	26.066	0.0516	7.5823

Table S4 The specific surface area and pore parameters of $\mathrm{FBV}_{0.4}$ before and after use

	Parameters
Rated input power (W)	1350
Rated output power (W)	800
Microwave operating frequency (MHz)	2450
External dimensions (mm)	500×420×300
Inner cavity size (mm)	320×300×200
Fuselage weight (kg)	16.5

 $Table \ S5 \ {\rm Specifications} \ of \ {\rm Microwave \ chemical \ reactor}$

References:

1 S. Bose and M. Kumar, Chemosphere, 2024, 364, 143071.

2 S. Li, J. Pang, W. Han, X. Cheng, C. Meng, N. Li, M. Zeng and J. Liu, *Journal of Environmental Chemical Engineering*, 2023, **11**, 109274.

3 F. Xu, N. An, C. Lai, M. Zhang, B. Li, S. Liu, L. Li, L. Qin, Y. Fu, H. Yi and H. Yan, *Chemosphere*, 2022, **293**, 133648.

4 A. Samadi-Maybodi and R. Khabazifard, Optik, 2022, 262, 168934.

5 C. Li, L. Bao, Y. Shi, Z. Tian, Y. Ji, M. Cui, Z. Zhao and X. Wang, *Applied Surface Science*, 2024, 662, 160132.

6 D. Wang, F. Jia, H. Wang, F. Chen, Y. Fang, W. Dong, G. Zeng, X. Li, Q. Yang and X. Yuan, *Journal of Colloid and Interface Science*, 2018, **519**, 273–284.

7 X. Chen, X. Liu, L. Zhu, X. Tao and X. Wang, Chemosphere, 2022, 291, 133032.

8 M. Ashrafi, M. Farhadian, A. R. Solaimany Nazar and M. Hajiali, *Applied Surface Science*, 2024, **662**, 160098.

9 H. Hu, J. Jin, M. Xu, C. Xu, Y. Cheng, W. Ji, Z. Ding, M. Shao and Y. Wan, *Optical Materials*, 2023, **135**, 113262.

10 P. Sethi, S. Basu and S. Barman, New J. Chem., 2025, 49, 8454–8471.