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1 Zeolite structures

1.1 Aluminium placement algorithms

To generate the dataset used in this project, the ZEORAN program1 was used
to place aluminium atoms in all-silica zeolites, using four algorithms for dis-
tributing the atoms throughout the structure. For some zeolite structures, the
aluminium placement was done using PORRAN2, which is a Python extension
of ZEORAN. The four algorithms include clusters, chains, maximum entropy
and random. These algorithms make use of a graph representation of the zeo-
lite, where edges between T-atoms are drawn if they are part of the same T-O-T
bond.

The clusters algorithm initially places an aluminium atom in a random
position in the structure. Following this, the neighbours of aluminium atoms
are recursively substituted with aluminium atoms, until the desired amount of
substitutions is reached. Structures generated using this algorithm contain a
high amount of non-Löwenstein bonds.

In the chains algorithm, a user-defined number of chains (with a user-defined
length per chain) of aluminium atoms is placed throughout the zeolite struc-
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Figure S1: Example of structures generated with 4 aluminium substitutions for
MOR, TON and ITW. In case of the chains algorithm, 2 chains of length 2
were placed. Note that clusters and chains algorithms might place aluminium
patterns crossing the periodic boundary. All structures are viewed along the
z-axis.

tures. Chains are placed in such a way that two separate chains do not connect.
Furthermore, chains do not have branches, meaning that each aluminium atom
in the chain will have one (if at the end) or two neighbours.

When using the maximum entropy algorithm, aluminium atoms are placed
approximately uniformly distributed throughout the structure. In ZEORAN,
this is achieved using a random walk. In PORRAN, aluminium atoms are
iteratively placed, where silicon atoms which are the furthest from their closest
aluminium atom have a proportionally higher chance to be selected. As such,
there should be no non-Löwenstein bonds present in these structures.

Finally, the random algorithm randomly places aluminium atoms in the
structure. Structures generated using this algorithm do not follow any particular
distribution.

In Figure S1, each algorithm was used to generate an aluminium substitued
strcuture for the MOR, TON and ITW zeolites. For each structure, 4 aluminium
atoms were placed using their respective algorithms.
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Figure S2: Number of samples for each zeolite topology. Note that the x-axis is
in log-scale.

1.2 Zeolite topologies

In Figure S2, the number of samples for each topology used in this work can
be found. While more structures were originally simulated, structures with a
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heat of adsorption error of higher than 1.5 kJ/mol or an error higher than 5% of
the range of the heat of adsorption for that topology were dropped. Topologies
for which too much data was dropped (less than 75 structures) as part of this
filtering were not considered in this work.

2 Isotherm simulation validation

2.1 Reduced simulation settings

Due to the large number of simulations needed to obtain an isotherm for a single
structure, generating a large and varied dataset can be relatively time consum-
ing. To speed up these simulations, some approximations can be made, such as
reducing the number of unit cells used. As a result of the unit cell reduction,
the super cell used in the simulation might not have a size twice the cutoff range
for the Lennard-Jones potential. Depending on the zeolite topology, this can
lead to interactions between atoms not being modeled properly. Therefore, it is
necessary to verify that a simulation with the reduced number of unit cells pro-
duces results that are in agreement with the simulation with the correct number
of unit cells.

Table S1: Adsorption isotherm simulation settings for each topology
Full simulation box Reduced simulation box

(#unit cells) (#unit cells)
MOR 2x2x4 1x1x2
MFI 2x2x2 1x1x2
MEL 2x2x2 1x1x2
TON 2x2x5 2x2x5
ITW 2x2x3 2x2x3

The number of unit cells used for each zeolite topology can be found in Table
S1. For the MOR, MFI and MEL zeolite, the number of unit cells used was
reduced. To verify that the full and reduced simulations are in agreement, we
selected five configurations of each zeolite, with varying Si/Al ratios. For each
of these structures, we carried out a simulation using both the full and reduced
settings. A comparison between the two can be found in Figure S3. For all
different structures, we notice that there is a near-perfect agreement between the
two simulation settings, with only minor fluctuations in the reduced simulation.
Therefore, we can shorten these simulations using the reduced settings without
any significant sacrifices in accuracy.

2.2 Isotherm Fitting

Since we used reduced simulation settings for some of the isotherms simulations,
certain fluctuations might occur in the simulated loading. In order to minimize
the effect of these fluctuations, we fit the 2-site Langmuir-Freundlich equation
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Figure S3: Isotherms for MOR, MFI and MEL structures with various Si/Al
ratios, as predicted by the simulations using the full simulation box (blue), and
the simulations using the reduced box (orange).

on the simulated loadings, using RUPTURA3. We compare the simulated load-
ing with the fitted loading in Figure S4. As can be seen, there are some minor
deviations from the diagonal in the parity plots, which suggests some outliers
have been smoothed out, while the overall correlation between the fitted and
simulated isotherms is excellent. As such, we can conclude that using RUP-
TURA to fit the 2-site Langmuir-Freundlich does not affect the overall shape of
the isotherm while smoothing out fluctuations.
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Figure S4: Parity plots for the isotherm fitting using RUPTURA. Darker blue
indicates a higher count. Note that the color gets darker in log-scale.
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3 Model Hyperparameters

In Table S2, the hyperparameters for the various models used in this work are
listed. All models were trained for 400 epochs using the AdamW optimizer with
default settings and Mean-Squared Error (MSE) loss for both heat of adsorption
and isotherm predictions. The loading loss is computed over a random window
of 25 points, selected from 100 logarithmically spaced pressure values. This
is formalized in Equation S1, where Pi denotes the randomly selected subset
of pressure points for structure i, N is the batch size, and q′i(p) and q̂′i(p) are
the true and predicted loading derivative values, respectively. The total loss,
shown in Equation S2, combines the MSE on heat of adsorption with a weighted
loading loss. During the first 100 epochs, β is 0, and linearly increases to 1 in
the following 25 epochs.

Lloading =
1

N

N∑
i=1

1

25

∑
p∈Pi

(q′i(p)− q̂′i(p))
2

(S1)

L =
1

N

N∑
i=1

(
hi − ĥi

)2

+ β · Lloading (S2)

Table S2: Hyperparameters for the models used in this work.

GNN SymGNN ALIGNN Matformer

Hidden features 64 64 128 64
Hidden features (Output) 64 64 128 64
Hidden features (Hypernet) - 32 - -
Layers 5 5 3+31 5
Attention heads - - - 4

Batch size 128 128 32 64
Edge dropout 0.5 0.5 - -

4 Additional Results

In addition to evaluating generalization on CHA and ITW, we also test the
models on MEL, MFI, TON and MOR. The results are presented in Table S3.
SymGNN generally performs better for isotherm prediction, while the regular
GNN shows slightly lower errors for the heat of adsorption.

Figure S5 shows the true and predicted isotherm distributions. SymGNN
performs well for MEL and MFI but tends to underestimate the variance near
saturation pressures. The models struggle more with TON and MOR. The

1The ALIGNN model contains 3 ALIGNN layers, followed by 3 edge-gated graph convo-
lution layers.

S6



0.01 1 100 10000
0

1

2

3

4
MEL

0.01 1 100 10000
0

1

2

3

4
MFI

0.01 1 100 10000
0

1

2

3

4
TON

0.01 1 100 10000
0

1

2

3

4
MOR

0.01 1 100 10000
0

1

2

3

4

0.01 1 100 10000
0

1

2

3

4

0.01 1 100 10000
0

1

2

3

4

0.01 1 100 10000
0

1

2

3

4

Pressure (kPa)

Lo
ad

in
g 

(m
ol

/k
g)

Figure S5: Comparison of SymGNN and regular GNN in isotherm prediction
for the generalization experiment carried out with various zeolites. True loading
distribution (black) and loading predicted by SymGNN (blue, top row) and
GNN (red, bottom row) at all simulated pressures.
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Figure S6: Parity plots for the heat of adsorption prediction for SymGNN (blue,
top row) and the regular GNN (red, bottom row) for the generalization experi-
ment carried out with various zeolites. prediction.
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Table S3: Results for the zeolite test set.
Heat of adsorption Isotherm Isotherm sat.

Zeolite Model MAE MSE MAE MSE MAE MSE

M
E
L SymGNN 9.44 97.89 0.15 0.04 0.21 0.06

GNN 4.21 22.05 0.25 0.13 0.65 0.54

M
F
I SymGNN 7.32 60.33 0.17 0.06 0.30 0.13

GNN 4.60 26.68 0.21 0.08 0.54 0.31

T
O
N SymGNN 9.17 101.43 0.98 1.84 2.37 5.75

GNN 4.29 29.50 1.03 1.57 1.51 2.42

M
O
R SymGNN 2.24 9.15 0.33 0.19 0.84 0.74

GNN 7.48 63.13 0.36 0.25 1.02 1.07

adsorption behavior in TON is characterized by a delayed uptake and lower
maximum loading (in the range of simulated pressures), which are not well rep-
resented in the training set. On the other hand, MOR exhibits a higher maxi-
mum loading than the other zeolites. These differences in adsorption behavior
are difficult to predict accurately without sufficient examples in the training
data. Improving performance on these cases would likely require additional
data for a broader range of topologies or pre-training focused on capturing
topological effects.

Parity plots for the heat of adsorption in Figure S6 show that both models
capture trends related to different Si/Al configurations, as can been seen in the
high correlation between the true and predicted values. However, they often
underestimate or overestimate the absolute values. This indicates that while the
models learn local composition effects, capturing the full influence of topology
remains a challenge.
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