Supporting Information

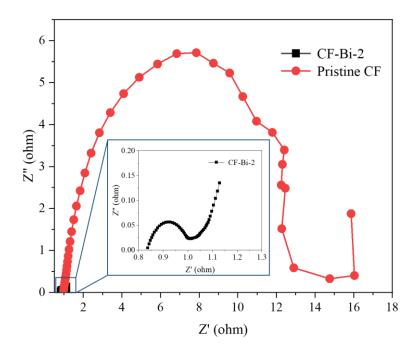
Tannic acid-assisted surface encasing of bismuth nanoparticle on

carbon felt for high-performance vanadium redox flow batteries

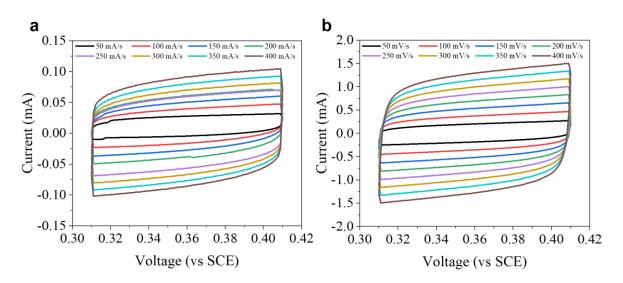
Jining Sun^{a,b}, Wenbo Zhang^a, Mengfan Lv^a, Jingren Chen^a, Mingming Zhao^a, Yu Cao^a, Jin Wang^a, Tao Fang^c, Hongdong Jiang^{c,*}, Lei Zhang^{a,b,*}

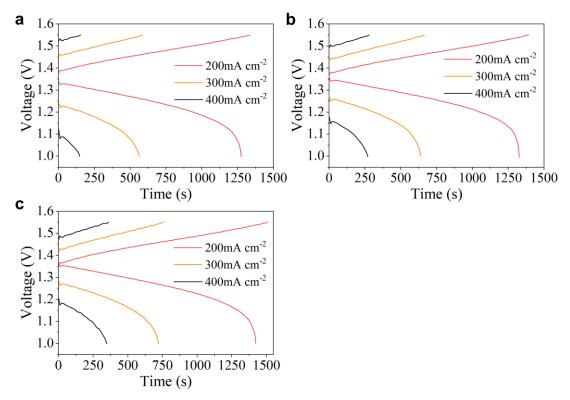
^a School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, China.
^b State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China.

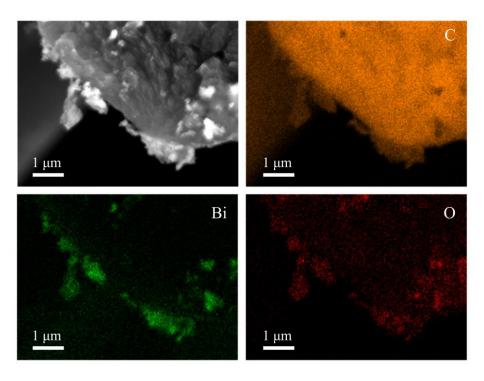
^c Wontai Power Company, Shanghai, 201613, China.


^{*}Corresponding authors.

E-mail address: lei.zhang@dlut.edu.cn (L. Zhang).


Supplementary Figures


Fig. S1 The digital photos of pristine carbon felt (CF) and bismuth nanoparticles-loaded CF (CF-Bi).


Fig. S2 The electrochemical impedance spectroscopy (EIS) diagrams of the pristine carbon felt and CF-Bi-2.

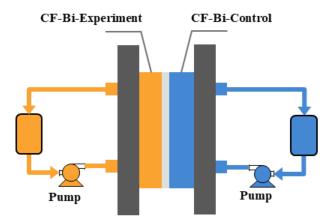

Fig. S3 Cyclic voltammetry curves for determining electrochemical active surface area (ECSA) of (a) Pristine CF and (b) CF-Bi-2.

Fig. S4 The charge-discharge curves of pristine CF (a), CF-Bi-1 (b), and CF-Bi-3 (c), in which the mass ratio of $Bi(NO_3)_3 \cdot 5H_2O$ /tannic acid is 1.5 and 2.5 for preparation of CF-Bi-1 and CF-Bi-3, respectively.

Fig. S5 EDS elemental mapping images of a cross-section view of semi-embedded Bi NPs decorated carbon fiber, in which the Bi NPs decorated carbon felt was synthesized through carbothermal reduction.

Fig. S6 Schematic diagram of the scouring device. The semi-embedded Bi NPs decorated carbon felt (CF) was synthesized through carbothermal reduction and is referred to as CF-Bi-Control. The encased Bi NPs were prepared via the tannic acid-assisted strategy, which is referred to as CF-Bi-Experiment.

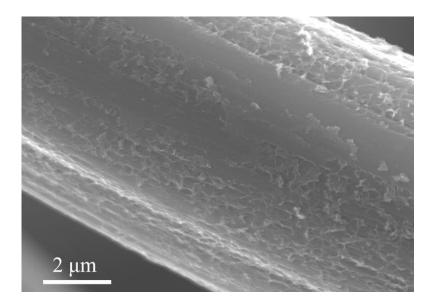


Fig. S7 SEM image of Bismuth nanoparticles after long-term operation

		Q (1)			
References	Area	Current density	EE	Number of	EE retention
	(cm^{-2})	$(mA cm^{-2})$	(%)	cycles	(%)
Appl. Energy. 2019 , 240, 226-235. ^[S1]	~4	480	72.60%	200	NA
Small, 2020. 16, 1907333. ^[S2]	~4	480	77.1± 0.2%	1000	98.2%
J. Mater. Chem. A. 2023, 11, 8700- 8709. ^[S3]	~4	400	70.60%	450	NA
Adv. Mater. 2024 , 36, 2305415. ^[S4]	~4	400	76.72%	1500	NA
J.Am.Chem.Soc. 2024, 146, 26024- 26033. ^[S5]		240	81.10%	1500	NA
Electrochim. Acta. 2024, 473, 143439. ^[S6]	~9	200	~80.1%	100	NA
Electrochim. Acta. 2025, 526, 146190. ^[S7]	~9	200	80.20%	1500	NA
J. Mater. Chem. A. 2025. ^[S8]	~16	250	89.7%	1000	NA
This work*	~15	400	72.11%	2000	99.97%

Table S1. Performance comparison between the latest bismuth-based catalytic electrodes and this work.

Supplementary References

[S1] H. R. Jiang, Y. K. Zeng, M. C. Wu, W. Shyy and T. S. Zhao, Appl. Energy, 2019, 240, 226-235.

[S2] X. Zhou, X. Zhang, L. Mo, X. Zhou and Q. Wu, Small, 2020, 16, 1907333.

[S3] Q.-a. Zhang, H. Yan, Y. Song, J. Yang, Y. Song and A. Tang, J. Mater. Chem. A, 2023, 11, 8700-8709.

[S4] X. Zhang, A. Valencia, W. Li, K. Ao, J. Shi, X. Yue, R. Zhang and W. A. Daoud, Adv. Mater., 2024, 36, 2305415.

[S5] F. Xing, Q. Fu, F. Xing, J. Zhao, H. Long, T. Liu and X. Li, Journal of the American Chemical Society, 2024, 146, 26024-26033.

[S6] Q. Li, D. Pei, X. Zhang and H. Sun, Electrochim. Acta, 2024, 473, 143439.

[S7] L. Yang, Z. Fan, F. Cui, T. Wu, T. Fang, Y. Guo, L. Tian, B. Pang, G. He and X. Wu, Electrochim. Acta, 2025, 526, 146190.

[S8] M. M. Omran, T. Al Najjar, N. K. Allam and E. N. El Sawy, J. Mater. Chem. A, 2025, DOI: 10.1039/D5TA00882D.