Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Unlocking C₃₋₄ Products in CO Electroreduction via One-Step Square-

Ring Coupling on Cu4-Embedded Carbon Nitride

Dewei Zhang¹, Shengluo Ma¹, Yunwen Wu², Wei Li³, Shenghong Ju^{1, 2, *}

¹China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China

² Materials Genome Initiative Center, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

³ Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, Scotland, U.K.

^{*} Corresponding author: shenghong.ju@sjtu.edu.cn.

COMPUTATIONAL METHODS

The adsorption energy (ΔE_a) of CO molecules on substrate were obtained by

$$\Delta E_a(*nCO) = (E(*nCO) - E_{sub} - nE(CO))/n\#(1)$$

where *n* is the number of CO molecules, E(*nCO), E_{sub} , E(CO) correspond to the total energies of CO molecules adsorbed on substrate, substrate and a free CO molecule in gas phase.

The Gibbs free energy $(\Delta G)[1]$ was defined as $\Delta G = \Delta E - T\Delta S + \Delta ZPE + \Delta G_U + \Delta G_{pH} \# (2)$

where ΔE is the charge of total energy of each state, entropy corrections $(T\Delta S)$ and zero-point energy (ΔZPE) are calculated based on vibration analysis, all free energies are at 298.15 K, and the ΔS of CO, H₂, H₂O and C_{3/4} products were obtained from the NIST database[2]. $\Delta G_U = -neU$ is the free energy contributed by electrode potential, where *n* is the number of electrons transferred, *e* is the amount of charge, and *U* is the applied potential. $\Delta G_{pH} = 2.303 * k_B T * pH$ represents the influence of the pH value[3]. Moreover, we used the computational hydrogen electrode (CHE) method.[3] The limiting potential (U_L) in full reaction path was based on

$$U_L = -\frac{\Delta G_{PDS}}{e} \# (3)$$

where ΔG_{PDS} is the free energy of the potential-determining step (PDS).

The charge density difference $(\Delta \rho)$ is calculated as

$$\Delta \rho = \rho(sub - CO) - \rho(sub) - \rho(CO) \# (4)$$

where $\rho(sub - CO)$ and $\rho(sub)$ represent the charge density of the substrates with and without CO absorbed, respectively, and $\rho(CO)$ represent the charge density of 1-4 CO molecules as the absorbed.

	Symbol	Nota	Adsorption energy	Average distance	Ideal
	Symbol	Note	of each atom (eV)	of C=O	configuration
C1	•	1-top	-0.79	1.162	
		1-bridge	×①		
		1-centroid	-1.59	1.247	\checkmark
C2		2-top-adjacent	×②		
	••	2-top-diagonal	-0.71	1.160	
		2-bridge	-1.13	1.192	\checkmark
C3	Δ	3-top	×③		
	Δ	2-top-1-bridge	-0.96	1.168	
	Δ	1-top-2-bridge	-0.94	1.178	
	Δ	3-bridge	-1.00	1.188	\checkmark
C4		4-top	-0.79	1.158	
		4-bridge	-0.84	1.188	\checkmark

Table S1. 1-4 CO adsorbed at the substrate possible adsorption sites to obtain the ideal configuration, the sites are related to Figure. 1a, the adsorption energy of each atom and average C=O bond lengths are recorded.

 $\hfill\square$ The initial structure of 1-bridge is optimized to 1-centroid.

 $\hfill\square$ The initial structure of 2-top-adjacent is optimized to 2-bridge.

 \Box The initial structure of 3-top is optimized to 1-top-2-bridge.

Figure S1. Change in Bader charge of four Cu atoms in the catalyst upon adsorption of 0-4 CO molecules.

Figure S2. Molecular orbitals of free CO molecule, and the computed partial density of states.

270.15 K, 1 1 bal)					
Molecules	E (eV)	ZPE (eV)	TS (eV)	G (eV)	
$H_{2}(g)$	-6.77	0.29	0.40	-6.88	
H ₂ O (l)	-14.23	0.57	0.58	-14.24	
CO (g)	-14.79	0.14	0.61	-15.26	
$CH_{4}(g)$	-24.07	1.19	0.58	-23.45	
CH ₃ OH (l)	-30.26	1.36	0.74	-29.64	
CH ₃ CHCH ₂ (g)	-48.80	2.12	0.82	-47.50	
CH ₃ CH ₂ CH ₂ OH (l)	-63.59	2.88	1.00	-61.71	
CH ₂ CHCHCH ₂ (g)	-57.19	2.28	0.86	-55.77	
$CH_2CH_2CH_2CH_2(g)$	-65.22	2.94	0.82	-63.10	
CH ₃ CH ₂ CHCH ₂ (g)	-65.30	2.87	0.95	-63.39	
CH ₃ CH ₂ CH ₃ CH ₂ OH (l)	-80.19	3.62	1.12	-77.69	

Table S2. The thermodynamic data for the molecules considered in this paper. ((T = 298.15 K, P = 1 bar)

Figure S3. Free energy diagram and optimized structures of the CORR pathways to CH_4 and CH_3OH on Cu_4 - $C_5N_2H_2$.

Step	Elementary Step	$\Delta G (eV)$
1	$3CO (g)^{+*} \rightarrow *CO^{+*}CO^{+*}CO$	-1.11
2	*CO+*CO+*CO →*CO*CO*CO	0.20
3	$*CO*CO*CO+H^++e^- \rightarrow COH*CO*CO$	-0.04
4	$*COH*CO*CO+H^++e^- \rightarrow *COH*COH*CO$	-0.19
5	$*COH*COH*CO+H^++e^- \rightarrow *COH*COH*COH$	0.47
6	$*COH*COH*COH+H^++e^- \rightarrow *C*COH*COH+H_2O$	0.55
7	$^{*}\mathrm{C*COH*COH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH*COH*COH}$	-1.45
8	*CH*COH*COH +H ⁺ + $e^- \rightarrow$ *CH*C*COH+H ₂ O	0.40
9	$^{*}\mathrm{CH}^{*}\mathrm{C}^{*}\mathrm{COH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}^{*}\mathrm{CH}^{*}\mathrm{COH}$	-0.84
10	$^{*}CH^{*}CH^{*}COH^{+}H^{+}+e^{-} \rightarrow ^{*}CH^{*}CH^{*}C^{+}H_{2}O$	0.27
	*CH*CH*COH+H+ $e^- \rightarrow$ *CH ₂ *CH*COH	0.03
11	$^{*}\mathrm{CH}^{*}\mathrm{CH}^{*}\mathrm{CH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}^{*}\mathrm{CH}^{*}\mathrm{CH}$	-0.57
	$^{*}CH_{2}^{*}CH^{*}COH^{+}H^{+}+e^{-} \rightarrow ^{*}CH_{2}^{*}CH^{*}CHOH$	-0.07
12	$^{*}\mathrm{CH}^{*}\mathrm{CH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}^{*}\mathrm{CH}^{*}\mathrm{CH}$	-0.45
	$^{*}\mathrm{CH}_{2}^{*}\mathrm{CH}^{*}\mathrm{CHOH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow \mathrm{CH}_{3}^{*}\mathrm{CH}^{*}\mathrm{CHOH}$	0.95
13	$^{*}\mathrm{CH}_{2}^{*}\mathrm{CH}^{*}\mathrm{CH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}^{*}\mathrm{CH}^{*}\mathrm{CH}_{2}$	-0.25
	$\rm CH_3*CH*CHOH+H^++e^- \rightarrow CH_3CH_2*CHOH$	-1.17
14	$^{*}\mathrm{CH}_{2}^{*}\mathrm{CH}^{*}\mathrm{CH}_{2}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow \mathrm{CH}_{3}^{*}\mathrm{CH}^{*}\mathrm{CH}_{2}$	0.04
	$\rm CH_3\rm CH_2*\rm CHOH+\rm H^++e^- \rightarrow \rm CH_3\rm CH_2\rm CH_2\rm OH+*$	-0.85
15	$\rm CH_3*\rm CH*\rm CH_2 \rightarrow \rm CH_3\rm CH\rm CH_2+*$	-0.46

Table S3. Specific values of the free energy change for each step in the generation of the C_3 products in Cu_4 - $C_5N_2H_2$ shown in Figure 5, the colour coding is also consistent.

Stan	Elementery Ster	
	$4UU(g)^{+*} \rightarrow "UU^{+*}UU^{+*}UU^{+*}UU$	-0.88
2	$*CO+*CO+*CO+*CO \rightarrow *CO*CO*CO(\Box)$	0.26
3	$*CO*CO*CO(\Box)+H^++e^- \rightarrow *CO*COH*CO*CO$	-0.30
4	$*CO*COH*CO*CO+H^++e^- \rightarrow *CO*COH*COH*CO$	0.23
5	$*CO*COH*COH*CO+H^++e^- \rightarrow *CO*COH*COH*COH$	0.11
6	$*CO*COH*COH*COH+H^++e^- \rightarrow *COH*COH*COH$	
7	$^{*}COH^{*}COH^{*}COH^{+}COH^{+}H^{+}+e^{-} \rightarrow ^{*}C^{*}COH^{*}COH^{+}COH^{+}H_{2}O$	
8	$*C*COH*COH*COH+H^++e^- \rightarrow *CH*COH*COH*COH$	-0.95
9	$^{*}\mathrm{CH}^{*}\mathrm{COH}^{*}\mathrm{COH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}^{*}\mathrm{C}^{*}\mathrm{COH}^{+}\mathrm{COH}^{+}\mathrm{H}_{2}\mathrm{O}$	0.33
10	*CH*C*COH*COH+H ⁺ + $e^- \rightarrow$ *CH*CH*COH*COH	-1.00
11	*CH*CH*COH*COH+H ⁺ + $e^- \rightarrow$ *CH*CH*C*COH+H ₂ O	0.10
12	$^{*}CH^{*}CH^{*}C^{*}COH^{+}H^{+}+e^{-} \rightarrow ^{*}CH^{*}CH^{*}COH$	-0.86
10	$^{*}CH^{*}CH^{*}CH^{+}COH^{+}H^{+}+e^{-} \rightarrow ^{*}CH^{*}CH^{*}CH^{*}CH^{+}H_{2}O$	0.64
13	*CH*CH*CH*COH+H+ $e^- \rightarrow$ *CH ₂ *CH*CH*COH	-0.87
	$^{*}CH^{*}CH^{*}CH^{*}C^{+}H^{+}+e^{-} \rightarrow ^{*}CH^{*}CH^{*}CH^{*}CH$	-1.21
14	$^{*}\mathrm{CH}^{*}\mathrm{CH}^{*}\mathrm{CH}^{*}\mathrm{CH}^{+}\mathrm{H}^{+}\mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}^{*}\mathrm{CH}^{*}\mathrm{CH}^{*}\mathrm{CH}(\Box)$	-0.63
	$^{*}CH_{2}^{*}CH^{*}CH^{*}COH^{+}H^{+}+e^{-} \rightarrow ^{*}CH_{2}^{*}CH^{*}CH^{*}CHOH$	0.41
	$^{*}CH^{*}CH^{*}CH^{+}CH^{+}H^{+}+e^{-} \rightarrow ^{*}CH_{2}^{*}CH^{*}CH^{*}CH$	-1.03
15	$^{*}CH^{*}CH^{*}CH^{(\Box)}+H^{+}+e^{-}\rightarrow CH_{2}^{*}CH^{*}CH^{*}CH^{(\Box)}$	-0.37
	$^{*}CH_{2}^{*}CH^{*}CH^{*}COH^{+}H^{+}+e^{-} \rightarrow ^{*}CH_{3}^{*}CH^{*}CH^{*}CHOH$	-0.25
	$^{*}CH_{2}^{*}CH^{*}CH^{*}CH^{+}H^{+}+e^{-} \rightarrow ^{*}CH_{2}^{*}CH^{*}CH^{*}CH_{2}$	0.92
16	$\mathrm{CH}_2^*\mathrm{CH}^*\mathrm{CH}^*\mathrm{CH}^+\mathrm{H}^+\mathrm{e}^-\to\mathrm{CH}_2\mathrm{CH}_2^*\mathrm{CH}^*\mathrm{CH}(\Box)$	0.31
	$^{*}CH_{3}^{*}CH^{*}CH^{*}CHOH^{+}H^{+}e^{-} \rightarrow CH_{3}^{*}CH^{*}CH_{2}^{*}CHOH$	0.53
	$^{*}CH_{2}^{*}CH^{*}CH^{*}CH_{2} \rightarrow CH_{2}CHCHCH_{2} + ^{*}$	-0.59
1.5	$^{*}CH_{2}^{*}CH^{*}CH^{*}CH_{2}^{+}H^{+}+e^{-} \rightarrow CH_{3}^{*}CH^{*}CH^{*}CH_{2}$	-0.64
17	$CH_2CH_2*CH*CH+H^++e^- \rightarrow CH_2CH_2CH_2*CH(\Box)$	-0.56
	$CH_3*CH*CH_2*CHOH+H^++e^- \rightarrow CH_3CH_2CH_2*CHOH$	-0.70
18	$CH_3*CH*CH*CH_2+H^++e^- \rightarrow CH_3CH_2CHCH_2+*$	-0.69
	$CH_2CH_2CH_2*CH+H^++e^- \rightarrow CH_2CH_2CH_2CH_2(\Box) +*$	-1.12
	$CH_3CH_2CH_2*CHOH+H^++e^- \rightarrow CH_3CH_2CH_2CH_2OH+*$	-1.20

Table S4. Specific values of the free energy change for each step in the generation of the C_4 products in Cu_4 - $C_5N_2H_2$ shown in Figure 6, the colour coding is also consistent.

Figure S4. Transition state calculations of the energy change of the straight chain *CH*CH*CH*CH via C-C coupling to get the cyclic chain *CH*CH*CH*CH(□).

Reference

[1] A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J.K. Nørskov, How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels, Energy & Environmental Science 3 (2010) 1311-1315.

[2] R.D.J. III, NIST Computational Chemistry Comparison and Benchmark DataBase., https://cccbdb.nist.gov

[3] J.K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard and H. Jonsson, Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, Journal of Physical Chemistry B 108 (2004) 17886-17892.