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1 Supplementary Experimental Section.

2 Preparation of AlVO-NMP electrode 

3 According to a reported method, AlxV2O5·nH2O was synthesized using a hydrothermal 

4 process.1 Specifically, 0.364 g of V2O5 and 2 mL of 30% H2O2 were added to 60 mL of water 

5 under constant stirring. Once the V2O5 dissolved, 2.414 g of AlCl3·6H2O was introduced into 

6 the solution. After stirring for 0.5 h, the mixture was transferred to a polytetrafluoroethylene-

7 lined stainless steel reactor and heated at 120 °C for 5 h. The reactor was then allowed to cool 

8 naturally to room temperature, yielding AlxV2O5·nH2O. To remove partial crystallization 

9 water, the AlxV2O5·nH2O sample was heated at 200 °C for 5 h in a vacuum drying oven. The 

10 resulting material was immersed in n-methyl-2-pyrrolidone (NMP) and subsequently filtered. 

11 After filtration, the sample was dried at 60 °C for 10 h in a vacuum drying oven to produce 

12 AlVO-NMP. A slurry was prepared by combining AlVO-NMP, Super P, and PVDF in a 7:3:1 

13 weight ratio, with NMP added to achieve the desired consistency. The mixture was thoroughly 

14 ground into a uniform paste and applied onto a 0.01 mm stainless steel mesh. Following drying 

15 at 60 °C for 24 h, the AlVO-NMP cathode was obtained, with an active material loading of 

16 about 1 mg cm–2.

17 Assemble symmetrical batteries and full batteries 

18 In the CR-2032 coin battery, a glass fiber with a thickness of 0.62 mm is used as the 

19 diaphragm, and 80 μl of 1M Zn(OTf)2 is used as the electrolyte. A symmetric battery ZIF-

20 71(IS)@Zn//SZIF-71(IS)@Zn is assembled with two identical ZIF-71(IS)@Zn electrodes. Use 

21 ZIF-71(IS)@Zn@Zn as the negative electrode and AlVO-NMP as the positive electrode to 

22 assemble the complete battery ZIF-71(IS)@Zn@Zn//AlVO-NMP. The assembly method of the 

23 soft-pack symmetric battery and the soft-pack full battery is the same as that of the coin battery.

24 Material characterization 

25 The surface morphology and structure of the Zn anode were examined using a scanning 

26 electron microscope (TESCAN Vega3). The chemical composition of the prepared electrode 

27 surfaces was analyzed using X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 

28 250XI, USA). X-ray diffraction (XRD) patterns were obtained with a Rigaku SmartLab SE 

29 (Cu Kα radiation) at a scanning rate of 2° min-1. Dendrite growth was observed in situ using 

30 an optical microscope (CX-HV4800) and an in-situ cell provided by Suzhou Vision Precision 

31 Instruments Co., Ltd.

32 Electrochemical measurements 

33 The electrochemical performance of half and full cells was evaluated at room temperature 
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1 using CR-2032 button cells and pouch cells. Constant current charge-discharge (GCD) tests 

2 were performed using the Neware Battery Test System (BTS4000, Shenzhen, China). For 

3 Zn//Cu asymmetric batteries, the charging cutoff voltage was set at 0.5 V. Additional 

4 electrochemical characterizations, including Tafel analysis, chronoamperometry (CA), linear 

5 sweep voltammetry (LSV), and electrochemical impedance spectroscopy (EIS), were carried 

6 out using the CHI 760E electrochemical workstation (Shanghai Chenhua). The open circuit 

7 voltage and internal resistance of pouch cells were measured with the HK-3560 precision 

8 internal resistance tester.

9

10 Fig. S1. Preparation diagram of ZIF-71(IS)@Zn.

11

12 Fig. S2. SEM images of ZnO nanorod arrays hydrothermally grown on Zn foil for 2 h, 4 h, 

13 and 6 h at 90 °C.
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1

2 Fig. S3. SEM images of ZIF-71 (IS) films formed by in-situ transformation of ZnO nanorods 

3 arrays with different initial thicknesses.

4

5 Fig. S4. Electrochemical Corrosion Behavior of Bare Zn and ZnO@Zn in ZIF-71 Synthesis 

6 Solution at 75 °C.

7

8 Fig. S5. SEM images of ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn.
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1

2 Fig. S6. 3D laser optical images of (a) ZIF-71(Sp)@Zn and (b) ZIF-71(IS)@Zn.

3

4 Fig. S7. FT-IR spectra of ZIF-71(Sp)@Zn.

5

6 Fig. S8. XRD patterns of ZIF-71(IS)@Zn and ZIF-71(Sp)@Zn.
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1

2 Fig. S9. High-resolution XPS spectrum of O 1s in ZnO@Zn.

3

4 Fig. S10. High-resolution XPS spectrum of O 1s in ZIF-71(IS)@Zn.

5

6 Fig. S11. (a) Full XPS spectra of ZIF-71(Sp)@Zn. High-resolution XPS spectrum of (b) C 1s, 

7 (c) N 1s and (d) Cl 2p in ZIF-71(Sp)@Zn.
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1

2 Fig. S12. Contact angles (CAs) of a Zn(CF3SO3)2 aqueous solution dropped on bare Zn, ZIF-

3 71(Sp)@Zn, and ZIF-71(IS)@Zn.

4

5 Fig. S13. Nyquist patterns at different temperatures of (a) bare Zn, (b) ZIF-71(Sp)@Zn and (c) 

6 ZIF-71(IS)@Zn in symmetrical cells.

7 Use the Arrhenius equation (2) to calculate the activation energy (Ea):2

8
                                                                         

1
Rct

= Aexp( -
Ea

RT)                                                             (1)

9 Here, Rct, A, R, and T represent charge transfer resistance, frequency factor, gas constant, 

10 and absolute temperature, respectively.
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1

2 Fig. S14. (a) Chronoamperograms at a -150 mV overpotential and nyquist patterns of (b) bare 

3 Zn, (c) ZIF-71(Sp)@Zn, ZIF-71(IS)@Zn in symmetric cells before and after polarization.

4 Zn2+ transfer numbers ( ) in the symmetric Zn cells were calculated by the Bruce-
𝑡

𝑍𝑛2 +

5 Vincent formula (3):3 

6

                                                                      t
Zn2 + =

IS(∆V - I0R0)
I0(∆V - ISRS)

                                                              (2)

7 In this context, ∆V represents the applied voltage polarization, IS and RS denote the steady-

8 state current and resistance, and I0 and R0 represent the initial current and resistance. The 

9 applied polarization voltage here is -150 mV.

10

11 Fig. S15. Voltage profiles of (a) Zn//Cu, (b) Zn//ZIF-71(Sp)@Cu and (c) Zn// ZIF-71(IS)@Cu 
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1 asymmetric cells in selected cycles at 2 mA cm-2(areal capacity: 1 mAh cm-2).

2

3 Fig. S16. CE of Zn plating/stripping for bare Cu, ZIF-71(Sp)@Cu and ZIF-71(IS)@Cu at 4 

4 mA cm-2(areal capacity: 2 mAh cm-2). 

5

6 Fig. S17. Voltage profiles of (a) Zn//Cu, (b) Zn//ZIF-71(Sp)@Cu and (c) Zn// ZIF-71(IS)@Cu 

7 asymmetric cells in selected cycles at 4 mA cm-2(areal capacity: 2 mAh cm-2).

8

9 Fig. S18. EIS of (a) Zn//bare Cu, (b) Zn//ZIF-71(Sp)@Cu and (c) Zn//ZIF-71(IS)@Cu 

10 asymmetric cells at initial and after 100 cycles at 4 mA cm-2 (areal capacity: 2 mAh cm-2).
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1

2 Fig. S19. XRD patterns of bare Cu, ZIF-71(Sp)@Cu and ZIF-71(IS)@Cu foils after 100 cycles 

3 at 4 mA cm-2 (area capacity: 2 mAh cm-2).

4

5 Fig. S20. Enlarged voltage profiles of bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn 

6 symmetric cells at 1 mA cm-2 during (a) 0-10 h, (b) 530-540 h, (c) 1230-1240 h and (d) 2990-

7 3000h.

8
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1

2 Fig. S21. Enlarged voltage profiles of bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn 

3 symmetric cells at 3 mA cm-2 during (a) 0-10 h, (b) 347-357 h, (c) 1180-1190 h and (d) 1990-

4 2000h.
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1

2 Fig. S22. Enlarged voltage profiles of bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn 

3 symmetric cells at 4 mA cm-2 during (a) 0-10 h, (b) 286-296 h, (c) 400-410 h and (d) 990-

4 1000h.
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1

2 Fig. S23. Changes in thickness of bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn button-

3 symmetric batteries before and after cycling at 1 mA cm-2 (areal capacity: 0.5 mAh cm-2).

4

5 Fig. S24. Raman spectra of Bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn.
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1

2 Fig. S25. 1H NMR spectra of Bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn.

3

4 Fig. S26. SEM and EDS images of ZIF-71(IS)@Zn.

5

6 Fig. S27. N2 Adsorption/Desorption Profiles and Pore Structure Characterization of ZIF-71 

7 and ZIF-8.
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1

2 Fig. S28. Cycling Stability of Symmetric Cells Based on ZIF-71(IS)@Zn and ZIF-8(IS)@Zn 

3 at 6 mA cm-2/3 mAh cm-2.

4

5 Fig. S29. Enlarged voltage profiles of ZIF-71(IS)@Zn and ZIF-8(IS)@Zn symmetric cells at 

6 6 mA cm-2 during (a) 0-10 h, (b) 200-210 h and (c) 400-410 h.

7

8 Fig. S30. SEM images showing (a) bare Zn, (b) ZIF-71(Sp)@Zn and (c) ZIF-71(IS)@Zn 

9 following cycling for 50 h at 3 mA cm-2 (areal density:1.5 mAh cm-2).
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1

2 Fig. S31. Images of diaphragms after 100 cycles of (a) bare Zn, (b) ZIF-71(Sp)@Zn and (c) 

3 ZIF-71(IS)@Zn symmetric cells at 3 mA cm-2 (areal capacity: 1.5 mAh cm-2) after 50 cycles.

4

5 Fig. S32. XRD patterns of bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn foils after 100 cycles 

6 at 3 mA cm-2 (area capacity: 1.5 mAh cm-2).

7

8 Fig. S33. EIS of (a) bare Zn//bare Zn, (b) ZIF-71(Sp)@Zn//ZIF-71(Sp)@Zn and (c) ZIF-

9 71(IS)@Zn//ZIF-71(IS)@Zn symmetric cells at initial and after 100 cycles at 3 mA cm-2 (areal 

10 capacity: 1.5 mAh cm-2).
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1

2 Fig. S34. Enlarged voltage profiles of bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn pouch 

3 symmetric cells at 5 mA cm-2 during (a) 0-10 h, (b) 110-120 h, (c) 346-356 h and (d) 490-500h.

4

5 Fig. S35. Changes in thickness of bare Zn, ZIF-71(Sp)@Zn and ZIF-71(IS)@Zn button-

6 symmetric batteries before and after cycling at 2 mA cm-2 (areal capacity: 1 mAh cm-2).
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1

2 Fig. S36. Charge/discharge profiles of (a) bare Zn//AlVO-NMP, (b) ZIF-71(Sp)@Zn// AlVO-

3 NMP and (c) ZIF-71(IS)@Zn// AlVO-NMP batteries under various current densities.

4

5 Fig. S37. Cycling performance of bare Zn//AlVO-NMP, ZIF-71(Sp)@Zn//AlVO-NMP and 

6 ZIF-71(IS)@Zn//AlVO-NMP coin cells at 0.5 A g-1.

7

8 Fig. S38. Charge/discharge curves of (a) bare Zn//AlVO-NMP, (b) ZIF-71(Sp)@Zn// AlVO-

9 NMP and (c) ZIF-71(IS)@Zn// AlVO-NMP coin cells at 0.5 A g-1 under selected cycles.
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1

2 Fig. S39. Charge/discharge curves of (a) bare Zn//AlVO-NMP, (b) ZIF-71(Sp)@Zn// AlVO-

3 NMP and (c) ZIF-71(IS)@Zn// AlVO-NMP coin cells at 5 A g-1 under selected cycles.

4

5 Fig. S40. Charge/discharge curves of (a) bare Zn//AlVO-NMP, (b) ZIF-71(Sp)@Zn// AlVO-

6 NMP and (c) ZIF-71(IS)@Zn// AlVO-NMP pouch cells at 2 A g-1 under selected cycles.

7
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