Supporting Information

Optimizing Electrons Donation and Backdonation Effect by A Combination of d-Block Transition Metal and s-Block Calcium Atoms for Efficient Nitrogen Fixation

Lingli Liu,^a Guanping Wei,^a Zongchang Mao,^a Tiantian Hao,^a Ling Zhu,^{a*} Xijun Wang,^c and Shaobin Tang^{a,b*}

^aJiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, China

^bEngineering Research Center of Bamboo Advanced Materials and Conversion of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China

^c Department of Chemical and Biological Engineering, Northwestern University, 2145

Sheridan Road, Evanston, Illinois 60208, United States.

Authors to whom all correspondence should be addressed:

*Email: <u>zhuling05@gnnu.edu.cn</u>

tsb1980@xmu.edu.cn

catalyst	5 × 5	6 × 6	7 × 7
Sc-Ca	-1.18	-1.17	-1.12
Ti-Ca	-1.57	-1.58	-1.58
V-Ca	-1.45	-1.46	-1.45
Cr-Ca	-0.76	-0.69	-0.70
Mn-Ca	-0.74	-0.75	-0.76
Mo-Ca	-1.89	-1.83	-1.86

Table S1. The adsorption energy of N_2 (in eV)) on TM-Ca DACs catalysts with different supercell size.

Table S2. The adsorption energy of N_2 (in eV) on TM-Ca DACs catalysts with different k-point sampling.

catalyst	$3 \times 3 \times 1$	$4 \times 4 \times 1$	$5 \times 5 \times 1$	$6 \times 6 \times 1$
Sc-Ca	-1.17	-1.15	-1.15	-1.15
Ti-Ca	-1.58	-1.58	-1.58	-1.57
Cr-Ca	-0.69	-0.69	-0.69	-0.69

Fig. S1. Top and side view of optimized geometrical structures of TM-Ca DACs.

Fig. S2. The calculated formation energy of TM-Ca pair per atom.

Fig. S3. Spin-polarized PDOS of the d orbitals of TM and s, p and d orbitals of Ca atoms of TM-Ca pair and corresponding single atom: (a) TM = V, (b) Mo, (c) Fe, and Ru. The Fermi level is set to 0.

Fig. S4. The calculated COHP of the TM-N coordination bond on TM SAC and TM-Ca DACs: (a) TM = Cr, (b) V, and (c) Mo.

catalysts	side-on	end-on	end-on-TM	side-on-TM
Sc-Ca	-1.17		-0.97	
Ti-Ca	-1.58		-1.41	
V-Ca	-1.46			-0.92
Cr-Ca	-0.69		-0.64	
Mn-Ca	-0.75			0.03
Fe-Ca	-0.79		-0.82	-0.12
Co-Ca	-0.44		-0.25	
Ni-Ca	-0.41			
Cu-Ca	-0.04			
Zn-Ca	-0.41			
Y-Ca	-1.05		-0.83	
Zr-Ca	-1.56			
Nb-Ca	-1.85			
Mo-Ca	-1.83			-1.24
Tc-Ca	-1.65			-0.85
Ru-Ca	-0.93	-0.35	-0.91	-0.36
Rh-Ca	-0.41			
Pd-Ca	-0.36			
Ag-Ca	-0.56		-0.42	
Cd-Ca	-0.55	0.36		

Table S3. Adsorption energy (in eV) of different types of intermediates $*N_2$ on TM-Ca DACs for NRR, including side-on/ end-on and side-on-TM/ end-on-TM. (The horizontal line indicates that this adsorption configuration does not exist).

Fig. S5. The density of states (DOS) of free N_2 .

Fig. S6. The COHP of the $N \equiv N$ bond for N_2 adsorbed on (a) Cr SAC, (b) Ca SAC, (c) Cr-Ca DAC.

Fig. S7. Spin polarized PDOS of the d orbitals of V, s, p and d orbitals of Ca, and s and p orbitals of $*N_2$ for N_2 adsorbed on (a) V SAC, (b) Ca SAC, (c) V-Ca DAC.

Fig. S8. The COHP of the $N \equiv N$ bond for N_2 adsorbed on (a) V SAC, (b) Ca SAC, (c) V-Ca DAC.

Fig. S9. Schematic illustration for possible eNRR pathways on TM-Ca DACs.

(a)

Fig. S10. Underlying reaction pathways of N_2 reduction to NH_3 on the TM-Ca DACs with TM = (a) Sc, (b) Ti, (c) V, and (d) Cr and free energy change (in eV) of each elementary step, with the optimal pathway indicated in red.

Fig. S11. Underlying reaction pathways of N_2 reduction to NH₃ on the TM-Ca DACs with TM = (a) Mn, (b) Fe, (c) Co, and (d) Ni and corresponding free energy change (in eV) of each elementary step, with the optimal pathway indicated in red.

Fig. S12. Underlying reaction pathways of N_2 reduction to NH₃ on the TM-Ca DACs with TM = (a) Cu, (b) Zn, (c) Y, and (d) Zr and corresponding free energy change (in eV) of each elementary step, with the optimal pathway indicated in red.

Fig. S13. Underlying reaction pathways of N_2 reduction to NH_3 on the TM-Ca DACs with TM = (a) Nb, (b) Mo, (c) Tc, and (d) Ru and corresponding free energy change (in eV) of each elementary step, with the optimal pathway indicated in red.

(a)

Fig. S14. Underlying reaction pathways of N_2 reduction to NH₃ on the TM-Ca DACs with TM = (a) Rh, (b) Pd, (c) Ag, and (d) Cd and corresponding free energy change (in eV) of each elementary step, with the optimal pathway indicated in red.

Fig. S15. Optimized structures of NRR reaction intermediates on TM-Ca DACs.

Table S4. Free energy corrections. Computed zero-point energies (ZPE) and entropies multiplied by T (T = 298.15 k) (-TS) for adsorbed species.

TM-Ca DACs				
Species	E_{ZPE} (eV)	<i>TS</i> (eV)	<i>E_{ZPE} -TS</i> (eV)	
Enzymatic				
*N-*N	0.201	0.126	0.075	
*N-*NH	0.500	0.111	0.389	
*NH-*NH	0.816	0.132	0.684	
*NH-*NH ₂	1.142	0.164	0.978	
*NH ₂ -*NH ₂	1.501	0.202	1.299	
*NH ₂ NH ₃	1.667	0.255	1.412	
*NH ₃	1.006	0.208	0.798	
Consecutive				
*N-*N	0.201	0.126	0.075	
*N-*NH	0.500	0.111	0.389	
*N-*NH ₂	0.815	0.149	0.666	
*N	0.087	0.056	0.031	
*NH	0.336	0.102	0.234	
*NH ₂	0.674	0.098	0.576	
*NH ₃	1.006	0.208	0.798	
Distal				
*NN-TM	0.200	0.177	0.023	
*NNH-TM	0.475	0.169	0.306	
*NNH ₂ -TM	0.772	0.203	0.569	
TM SACs				
*N ₂	0.254	0.084	0.170	
*NNH	0.498	0.108	0.390	
*NHNH	0.799	0.208	0.591	
*NHNH ₂	1.115	0.225	0.890	
*NH	0.330	0.090	0.240	
*NH ₂	0.707	0.080	0.627	
*NH ₃	1.091	0.097	0.994	
*NNH ₂	0.813	0.178	0.635	
*N	0.086	0.061	0.025	

	*→	*N-*N→	*N-*NH→	*NH-*NH→	*NH-*NH ₂ →	*NH→	*NH2→	*NH3→
catalysis	*N-*N	*N-*NH	*NH-*NH	*NH-*NH ₂	*NH	*NH ₂	*NH3	*
Sc-Ca	-0.65	0.58	-0.20	-0.42	-0.31	-1.30	0.61	0.72
Cr-Ca	-0.17	0.41	0.30	0.11	-0.77	-0.78	-0.42	0.35
Mn-Ca	-0.23	0.69	0.45	0.02	-0.52	-1.09	-0.59	0.30
Fe-Ca	-0.27	0.91	0.29	0.02	-0.19	-1.31	-0.81	0.39
Y-Ca	-0.53	0.44	-0.11	-0.37	-0.36	-1.39	0.83	0.52
Zr-Ca	-1.04	0.15	0.22	-0.39	-1.15	-0.63	1.27	0.60
Nb-Ca	-1.33	0.17	0.50	-0.18	-1.60	0.00	1.03	0.44
Tc-Ca	-1.13	0.60	0.41	0.35	-1.27	-0.46	0.21	0.32
Ru-Ca	-0.41	0.69	0.46	-0.10	-0.53	-1.08	-0.55	0.55
	*	*N-*N→	*N-*NH→	*N-*NH ₂ →	*N→	*NH→	*NH2→	*NH3→
	*N-*N	*N-*NH	*N-*NH ₂	*N	*NH	*NH2	*NH3	*
V-Ca	-0.94	0.38	0.24	-0.45	-0.88	-0.20	0.37	0.51
Mo-Ca	-1.31	0.39	0.36	-1.08	-0.26	0.02	0.53	0.38
	*→	*N-*N→	*N-*NH→	*N-*NH ₂ →	*NH-*NH ₂ →	*NH→	*NH2→	*NH3→
	*N-*N	*N-*NH	*N-*NH2	*NH-*NH ₂	*NH	*NH ₂	*NH3	*
Ti-Ca	-1.06	0.42	-0.05	-0.03	-1.27	-0.34	0.59	0.77
	*→	*N-*N→	*N-*NH→	*NH-*NH→	*NH-*NH ₂ \rightarrow	*NH ₂ -*NH ₂ →	*NH2*NH3→	*NH3→
	*N-*N	*N-*NH	*NH-*NH	*NH-*NH ₂	*NH2-*NH2	*NH2*NH3	*NH3	*
Co-Ca	0.08	1.29	0.17	-0.12	-0.20	-1.94	-0.70	0.45
Cu-Ca	0.48	1.46	-0.21	0.00	-1.05	-1.14	-0.91	0.39
Zn-Ca	0.11	1.32	-0.36	-0.11	-0.16	-2.18	0.11	0.29
Rh-Ca	0.11	1.51	-0.13	0.16	-1.10	-1.02	-1.01	0.51
Ag-Ca	-0.04	1.43	-0.26	0.04	-0.51	-1.73	-0.27	0.36
	*→	*N-*N→	*N-*NH→	*NH-*NH→	*NH-*NH ₂ \rightarrow	*NH₂-*NH₂→	*NH2→	*NH3→
	*N-*N	*N-*NH	*NH-*NH	*NH-*NH ₂	*NH ₂ -*NH ₂	*NH ₂	*NH3	*
Ni-Ca	0.11	1.83	0.01	-0.03	-1.23	-1.00	-1.06	0.40
Pd-Ca	0.16	1.88	-0.57	0.79	-1.55	-1.04	-1.01	0.37

Table S5. Free energy changes (in eV) of all elementary steps along the favorable reaction pathway by TM-Ca DACs. Numbers in blue indicate the maximum free energy barrier among all elementary steps.

Substrate	Active site	UL	References
G	V-Ca	-0.38	This work
G	Cr-Ca	-0.41	This work
G	Ca	-0.67	Ref.1
C_3N_4	В	-0.47	Ref.2
C ₂ N	Мо	-0.53	Ref.3
G	Мо	-0.99	Ref.4
Pc	V ₂	-0.39	Ref.5
TMD	CaBa-MoSe ₂	-0.60	Ref.6
BNNT	Ti	-0.36	Ref.7

Table S6. Comparison of results from promising TM-Ca DACs and previously reported eNRR electrocatalysts. Limiting potential (U_L in V).

Table S7. The adsorption energy of N_xH_y (ΔE (* N_xH_y), in eV)) on Cr-SAC and Cr-Ca DACs catalysts.

$\Delta E (*N_xH_y)$	Cr-SAC	Cr-Ca DAC
*N2	-0.46	-0.69
*NNH	-0.13	-0.66
*NHNH	-0.08	-0.81
*NHNH ₂	-0.56	-0.97
*NH	-0.17	-0.16
*NH ₂	-1.19	-1.34
*NH ₃	-1.75	-2.05

Fig. S16. Spin-polarized PDOS of the d orbitals of Cr, s, p and d orbitals of Ca, and s and p orbitals of N_xH_y intermediates adsorbed on Cr SAC (top panel) and Cr-Ca DAC (bottom panel). The Fermi level is set to 0.

Reaction Coordinates

Fig. S17. A comparison of (a) geometry structure of Cr-Ca pair with and without carbon vacancy defect and (b) free energy diagram of eNRR catalyzed by these catalysts. The arrows define the free energy change of PDS.

Fig. S18. A comparison of geometry structure and free energy diagram of NRR for the Cr-Ca pair with N_8V_4 and N_6 coordination structures. The arrows define the free energy change of PDS.

Fig. S19. The relationship between the $\Delta E(*N-*NH)$ and (a) the polarized charge of N₂ ($\Delta Q(*N_2)$), and (b) adsorption energy of *N₂ ($\Delta G(*N_2)$).

References

- T. Liu, X. Qu, Y. Zhang, X. Wang, Q. Dang, X. Li, B. Wang, S. Tang, Y. Luo and J. Jiang, Regulating the charge densities of s-block calcium single-atom site catalysts for efficient N₂ activation and reduction, *Chem. Eng. J.*, 2023, 457,141187.
- 2 C. Ling, X. Niu, Q. Li, A. Du and J. Wang, Metal-free single atom catalyst for N₂ fixation driven by visible light, *J. Am. Chem. Soc.*, 2018, **140**, 14161-14168.
- 3 Z. Wang, Z. Yu and J. Zhao, Computational screening of a single transition metal atom supported on the C₂N monolayer for electrochemical ammonia synthesis, *Phys. Chem. Chem. Phys.*, 2018, **20**, 12835-12844.
- 4 L. Hui, Y. Xue, H. Yu, Y. Liu, Y. Fang, C. Xing, B. Huang and Y. Li, Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst, *J. Am. Chem. Soc.*, 2019, **141**, 10677-10683.
- 5 X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen and S. Huang, Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst, J. Am. Chem. Soc., 2020, 142, 5709-5721.
- 6 D. Wu, J. Wu, H. Li, W. Lv, Y. Song, D. Ma and Y. Jia, Unlocking the potential of alkaline-earth metal active centers for nitrogen activation and ammonia synthesis: the role of s–d orbital synergy, *J. Mater. Chem. A*, 2024, **12**, 4278-4289.
- 7 S. Zhou, X. Yang, X. Xu, S. X. Dou, Y. Du and J. Zhao, Boron nitride nanotubes for ammonia synthesis: activation by filling transition metals, *J. Am. Chem. Soc.*, 2020, 142, 308-317.