Supplementary information

Cohesive Co and Mo₂C Heterostructure Catalysts Strongly Confined to Hollow Carbon Support for Enhanced Kinetics and Durability in the Alkaline Hydrogen Evolution Reaction

Hyein Lee,[‡]^a Miyeon Kim,[‡]^b Jeonghan Roh,^a KwangHo Lee,^a Jooyoung Shin,^c Jeong Woo Han,^{*b} MinJoong Kim,^{*d}

and EunAe Cho*a

^aDepartment of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.

^bDepartment of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea.

^cHydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129 Republic of Korea.

^dDepartment of Materials Science and Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin, Gyeonggi-do 17104, Republic of Korea.

*Corresponding Author: <u>eacho@kaist.ac.kr</u> (EunAe Cho), <u>mj.kim@khu.ac.kr</u> (MinJoong Kim), <u>jwhan98@snu.ac.kr</u> (Jeong Woo Han)

[‡]H. L. and M. K. contributed equally to this paper.

Keyword: Alkaline hydrogen evolution reaction, N-doped carbon hollow polyhedron, Cobalt, Molybdenum carbide, Dual-active sites

Figure S1. DFT models of (a) Co FCC (111), (b) Mo₂C (101), and (c) Co-Mo₂C. (d) Density of States (DOS) of Co, Mo₂C, and Co-Mo₂C models.

Figure S2. TEM images of (a) ZIF-8 and (b) ZIF-8@ZIF-67. HAADF-STEM elemental mapping of (c-f) ZIF-8@ZIF-67.

Figure S3. XRD patterns of ZIF-8, ZIF-67, ZIF-8@ZIF-67, and Mo-ZIF-8@ZIF-67.

Figure S4. (a) TGA analysis of ZIF-8, ZIF-8@ZIF-67, and ZIF-67 under N₂, heated from 30 to 805 °C at 10 K·min⁻¹. (b) XRD patterns of ZIF-8@ZIF-67 after thermal decomposition at various temperatures. (c) Schematic representation of the thermal decomposition process of ZIF-8@ZIF-67.

Figure S5. XPS spectra of Zn 2p of Co-Mo₂C/NCHP, Co/NCHP, Mo₂C/NCHP, and $Mo_2C/Co/NCHP$.

Figure S6. Schematic illustration of the preparation of Co/NCHP, Mo₂C/NCHP, Mo₂C/Co/NCHP, and Co-Mo₂C/NCHP.

Figure S7. (a) HRTEM image, (b, c) HAADF-STEM elemental mapping results, and (d) typical EDX spectrum of Co-Mo₂C/NCHP.

Figure S8. TEM images of (a) Co/NCHP, (b) $Mo_2C/NCHP$, (c) $Mo_2C/Co/NCHP$, and (d) Co-Mo_2C/NCHP.

Figure S9. (a-c) HAADF-STEM images, (d-f) elemental mapping, and (g-i) elemental line scanning results of Co/NCHP, Mo₂C/NCHP, and Mo₂C/Co/NCHP.

Figure S10. FT-IR spectra of Co/NCHP, Mo₂C/NCHP, Mo₂C/Co/NCHP, and Co-Mo₂C/NCHP.

Catalyst	Shell	CN ^a	R (^Å)	$\sigma^2(\text{\AA}^2)$	ΔE_0 (eV)	R factor
Co foil ^b	Co-Co	12	2.49	0.006	8.2	0.001
Co-Mo ₂ C/NCHP ^b	Co-Co	10	2.42	0.006	7.0	0.001
	Co-Mo	0.5	2.56	0.008	7.8	
Co/NCHP ^b	Co-Co	8.1	2.50	0.007	4.2	0.008
	Co-O	0.7	1.89	0.008	-4.2	
Mo ₂ C/Co/NCHP ^b	Co-Co	6.4	2.50	0.005		0.005
	Co-O	0.9	1.97	0.009		0.005
Commercial CoO ^b	Co-Co	10.8	3.00	0.008	2.0	0.007
	Co-O	4.5	2.07	0.009	-2.8	
	Co-Co1	6.7	2.90	0.005		
Commercial Co ₃ O ₄ ^b	Co-Co2	5.5	3.34	0.008	-5.0	0.004
	Co-O	4.9	1.92	0.003		

Table S1. The best EXAFS fitting parameters for Co foil, Co-Mo₂C/NCHP, Co/NCHP, Mo₂C/Co/NCHP, CoO, Co₃O₄.

^aN, coordination number; σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ΔE_0 , inner potential correction; R, R factor indicating the goodness of the fit. Error bounds (accuracies) that characterize the structural parameters obtained by EXAFS spectroscopy are estimated as N ± 20%; R ± 1%; $\sigma^2 \pm 20\%$; $E_0 \pm 20\%$. S_0^{-2} is fixed to 0.77 as determined from Co foil fitting. Bold numbers indicate fixed coordination number (N) according to the crystal structure. Co-Co1 and Co-Co2 represent the first and second nearest Co atoms to the central Co atom. ^bFitting range: $3.0 \le k (/Å) \le 11$ and $1.3 \le R (Å) \le 3.5$.

Figure S11. EXAFS fitting spectra for (a) Co foil, (b) Co-Mo₂C/NCHP, (c) Co/NCHP, (d) $Mo_2C/Co/NCHP$, (e) CoO and (f) Co₃O₄. The corresponding fitting parameters are listed in Table S1.

Table S2. The best EXAFS fitting parameters for Mo foil, Co-Mo₂C/NCHP, Mo₂C, Mo₂C/NCHP, Mo₂C/Co/NCHP, MoO₃.

Catalyst	Shell	CN ^a	R(Å)	$\sigma^2(\text{\AA}^2)$	$\Delta E_0(eV)$	R factor
Mo foil ^b	Mo-Mo1	8	2.72	0.003	-7.1	0.003
	Mo-Mo2	6	3.14	0.003		
Co-Mo ₂ C/NCHP ^b	Mo-Mo1	5.3	2.98	0.006		
	Мо-Со	0.5	2.68	0.009	-7.8	0.007
	Mo-C	1.8	2.1	0.001		
Commercial Mo ₂ C ^c	Mo-Mo1	2.5	2.89	0.001		
	Mo-Mo2	1.0	3.00	0.001	5.0	0.005
	Mo-C	2.3	2.06	0.009		
M02C/NCHP ^b	Mo-Mo1	3.4	2.53	0.007		
	Mo-Mo2	0.3	2.97	0.006	1.3	0.009
	Mo-C	1.7	1.89	0.009		

	Mo-Mo1	0.7	2.71	0.010		
	Mo-Mo2	1.8	2.99	0.007	7.2	0.009
M0 ₂ C/C0/NCHP*	Mo-C	1.2	2.02	0.001	7.5	
	Mo-O	0.9	1.75	0.001		
	Mo-O1	0.6	1.65	0.003		
Commercial MoO3 ^d	Mo-O2	1.2	1.96	0.001	-7.2	0.008
	Mo-O3	0.9	2.11	0.001		

^aN, coordination number; σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ΔE_0 , inner potential correction; R, R factor indicating the goodness of the fit. Error bounds (accuracies) that characterize the structural parameters obtained by EXAFS spectroscopy are estimated as N ± 20%; R ± 1%; $\sigma^2 \pm 20\%$; $E_0 \pm 20\%$. S_0^2 is fixed to 0.93 as determined from Mo foil fitting. Bold numbers indicate fixed coordination number (N) according to the crystal structure. Mo-Mo1 and Mo-Mo2 represent the first and second nearest Mo atoms to the central Mo atom. Similarly, O1, O2, and O3 represent the first, second, and third nearest neighbor coordination O atoms. ^bFitting range: $3.2 \le k (/Å) \le 15.7$ and $2.0 \le R$ (Å) ≤ 3.1 . ^cFitting range: $3.1 \le k (/Å) \le 15.7$ and $1.5 \le R$ (Å) ≤ 3.3 . ^dFitting range: $3.0 \le k (/Å) \le 12.5$ and $1.2 \le R$ (Å) ≤ 2.2 .

Figure S12. EXAFS fitting spectra for (a) Mo foil, (b) Co-Mo₂C/NCHP, (c) Mo₂C, (d) $Mo_2C/NCHP$, (e) $Mo_2C/Co/NCHP$, and (f) MoO_3 . The corresponding fitting parameters are listed in Table S2.

Figure S13. Comparison of the cell voltages required to achieve 10 mA/cm² of Co-Mo₂C/NCHP in 1 M KOH using different alkaline water electrolyzers.¹⁻⁶

Figure S14. HER polarization curves at a scan rate of 0.05 V/s in 1.0 M KOH.

Figure S15. Cyclic voltammograms of (a) Co/NCHP, (b) $Mo_2C/NCHP$, (c) $Mo_2C/Co/NCHP$, and (d) Co-Mo_2C/NCHP, recorded in potential region between 1.0 and 1.1 V_{RHE} at scan rates ranging from 10 to 50 mV/s in H₂-saturated 1 M KOH solution.

Figure S16. Scan rate dependence of the capacitive current densities for Co/NCHP, $Mo_2C/NCHP$, $Mo_2C/Co/NCHP$, and Co-Mo_2C/NCHP. The capacitive current densities are the sum of the anodic and cathodic current densities at 1.05 V_{RHE}, derived from the data in Figure S15.

Figure S17. Anion exchange membrane water electrolysis single-cell performance of Co- $Mo_2C/NCHP$ and Pt/C cathode with IrO₂ anode.

Figure S18. Chronopotentiometry results measured at a current density of 0.5 A/cm² of the AEMWE single cells using Co-Mo₂C/NCHP as anode catalysts.

Figure S19. The results of H adsorption on individual Co and Mo_2C models and on the Co/C interface and the Co/Mo interface in Co-Mo₂C heterostructure.

Figure S20. The charge density difference of Co-Mo₂C, divided by the Co/Mo interface and the Co/C interface. The iso-surface level is set as $0.01 \text{ e}/\text{Å}^3$.

Charge Density Difference	Со	Мо	С
Co/C Interface	+2.22 e	-0.65 e	-1.45 e
Co/Mo Interface	-2.47 e	+2.65 e	-0.18 e
Total	-0.25 e	+1.99 e	-1.74 e

Table S3. The charge density difference in the Co-Mo₂C model.

Figure S21. The Gibbs free energy of H adsorption on the Co site and the Mo_2C site in Co- Mo_2C heterostructure.

Figure S22. The results of water dissociation mechanisms on individual Co and Mo₂C models and on Co-Mo₂C heterostructure.

Figure S23. IR-corrected HER polarization curves at a scan rate of 0.05 V/s in 1.0 M PBS.

Figure S24. IR-corrected HER polarization curves of Pt/C.

Figure S25. IR-corrected HER polarization curves of (a) Co/NCHP, (b) Mo₂C/NCHP, and (c) Mo₂C/Co/NCHP.

Figure S26. TEM images after 1000 potential cycles and Mo concentration determined by ICP for (a-b) Mo₂C/Co/NCHP and (c-d) Co-Mo₂C/NCHP.

Figure S27. (a) XRD patterns, (b) Raman spectra, (c) Co 2p_{3/2} XPS spectra, and (d) Mo 3d spectra of Co-Mo₂C/NCHP before and after 1000 HER potential cycles.

References

1. S. Radhakrishnan, S. Ramakrishnan, S. K. Jayaraj, M. Mamlouk, B.-S. Kim, A Simple and Efficient Non-Noble Cathode Catalyst Based on Carbon Hollow Nanocapsules Containing Cobalt-Based Materials for Anion Exchange Membrane Water Electrolyzer, *small*, 2025, **21**, 2411019, DOI: 10.1002/smll.202411019.

2. X. Wang, C. Sun, Y. Zhang, W. Xin, X. Jiang, Z. Lu, L. Yu, M. Zhu, L. Yang, Discrepancy of alkaline/neutral hydrogen evolution activity from NiCoSe₂/NC and Co–NiSe/NC derived from in-

situ thermal and solution processing selenizations of ZIF-67, *Int. J. Hydrogen Energy*, 2024, **49**, 1236-1244, DOI: 10.1016/j.ijhydene.2023.09.155.

3. P. J. Sharma, S. Siraj, P. Sahatiya, C.K. Sumesh, P. M. Pataniya, Electroless plating of Co–P–O electrocatalyst on carbon cloth for alkaline water electrolysis, *J. Electroanal. Chem.*, 2024, **967**, 118491, DOI: 10.1016/j.jelechem.2024.118491.

4. T. Munawar, A. Bashir, F. Iqbal, M. Rafaqat, C. Guo, M. Zhiani, C. Zhao, Y. Tong, S. A. Khan, M. Koc, C.-F. Yan, g-C₃N₄-modulated CdS-V₂O₅/g-C₃N₄ nanosheets as efficient alkaline OER and HER electrocatalyst for water-splitting, *Fuel*, 2025, **385**, 134100, DOI: 10.1016/j.fuel.2024.134100.

5. J. Ran, Z. Zhang, H. Feng, H. Zhao, D.F. Chai, X. Huang, W. Zhang, M. Zhao, G. Dong, Y. Zang, P-doped Co-based nanoarray heterojunction with multi-interfaces for complementary HER/OER electrocatalysts towards high-efficiency overall water splitting in alkaline, *Int. J. Hydrogen Energy*, 2024, **64**, 935-946, DOI: 10.1016/j.ijhydene.2024.03.330.

6. Y. Sun, Z. Li, F. Zhu, F. Yin, S. Ge, F. F. Yang, L. Gao, G. Chen, F. Yang, P. Hu, Chemical Coprecipitation-Thermal Synthesis of Nano-Ni-Co Alloy for Efficient Hydrogen and Oxygen Evolution Reactions, *Electrocatalysis*, 2024, **16**, 96-105, DOI: 10.1007/s12678-024-00902-w.