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Figure S1. DFT models of (a) Co FCC (111), (b) Mo2C (101), and (c) Co-Mo2C. (d) Density of 

States (DOS) of Co, Mo2C, and Co-Mo2C models.

Figure S2. TEM images of (a) ZIF-8 and (b) ZIF-8@ZIF-67. HAADF-STEM elemental mapping 

of (c-f) ZIF-8@ZIF-67.
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Figure S3. XRD patterns of ZIF-8, ZIF-67, ZIF-8@ZIF-67, and Mo-ZIF-8@ZIF-67.

Figure S4. (a) TGA analysis of ZIF-8, ZIF-8@ZIF-67, and ZIF-67 under N2, heated from 30 to 

805 °C at 10 K·min-1. (b) XRD patterns of ZIF-8@ZIF-67 after thermal decomposition at various 

temperatures. (c) Schematic representation of the thermal decomposition process of ZIF-8@ZIF-

67.
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Figure S5. XPS spectra of Zn 2p of Co-Mo2C/NCHP, Co/NCHP, Mo2C/NCHP, and 

Mo2C/Co/NCHP.

Figure S6. Schematic illustration of the preparation of Co/NCHP, Mo2C/NCHP, Mo2C/Co/NCHP, 

and Co-Mo2C/NCHP.
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Figure S7. (a) HRTEM image, (b, c) HAADF-STEM elemental mapping results, and (d) typical 

EDX spectrum of Co-Mo2C/NCHP.

Figure S8. TEM images of (a) Co/NCHP, (b) Mo2C/NCHP, (c) Mo2C/Co/NCHP, and (d) Co-

Mo2C/NCHP.
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Figure S9. (a-c) HAADF-STEM images, (d-f) elemental mapping, and (g-i) elemental line 

scanning results of Co/NCHP, Mo2C/NCHP, and Mo2C/Co/NCHP.

Figure S10. FT-IR spectra of Co/NCHP, Mo2C/NCHP, Mo2C/Co/NCHP, and Co-Mo2C/NCHP.
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Table S1. The best EXAFS fitting parameters for Co foil, Co-Mo2C/NCHP, Co/NCHP, 
Mo2C/Co/NCHP, CoO, Co3O4.

Catalyst Shell CNa R ( )Å ( )𝜎2 Å2 (eV)∆𝐸0 R factor 

Co foilb Co-Co 12 2.49 0.006 8.2 0.001

Co-Co 10 2.42 0.006
Co-Mo2C/NCHPb

Co-Mo 0.5 2.56 0.008
7.8 0.001

Co-Co 8.1 2.50 0.007
Co/NCHPb

Co-O 0.7 1.89 0.008
-4.2 0.008

Co-Co 6.4 2.50 0.005
Mo2C/Co/NCHPb

Co-O 0.9 1.97 0.009
0.005

Co-Co 10.8 3.00 0.008
Commercial CoOb

Co-O 4.5 2.07 0.009
-2.8 0.007

Co-Co1 6.7 2.90 0.005

Co-Co2 5.5 3.34 0.008
Commercial 

Co3O4
b

Co-O 4.9 1.92 0.003

-5.0 0.004

aN, coordination number; σ2, Debye-Waller factor to account for both thermal and structural 
disorders; ΔE0, inner potential correction; R, R factor indicating the goodness of the fit. Error 
bounds (accuracies) that characterize the structural parameters obtained by EXAFS spectroscopy 
are estimated as N ± 20%; R ± 1%; σ2 ± 20%; E0 ± 20%. S0

2 is fixed to 0.77 as determined from 
Co foil fitting. Bold numbers indicate fixed coordination number (N) according to the crystal 
structure. Co-Co1 and Co-Co2 represent the first and second nearest Co atoms to the central Co 
atom. bFitting range: 3.0 ≤ k (/Å) ≤ 11 and 1.3 ≤ R (Å) ≤ 3.5.
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Figure S11. EXAFS fitting spectra for (a) Co foil, (b) Co-Mo2C/NCHP, (c) Co/NCHP, (d) 

Mo2C/Co/NCHP, (e) CoO and (f) Co3O4. The corresponding fitting parameters are listed in Table 

S1.

Table S2. The best EXAFS fitting parameters for Mo foil, Co-Mo2C/NCHP, Mo2C, Mo2C/NCHP, 
Mo2C/Co/NCHP, MoO3.

Catalyst Shell CNa R( )Å ( )𝜎2 Å2 (eV)∆𝐸0 R factor 

Mo-Mo1 8 2.72 0.003
Mo foilb

Mo-Mo2 6 3.14 0.003
-7.1 0.003

Mo-Mo1 5.3 2.98 0.006

Mo-Co 0.5 2.68 0.009Co-Mo2C/NCHPb

Mo-C 1.8 2.1 0.001

-7.8 0.007

Mo-Mo1 2.5 2.89 0.001

Mo-Mo2 1.0 3.00 0.001
Commercial 

Mo2Cc

Mo-C 2.3 2.06 0.009

5.0 0.005

Mo-Mo1 3.4 2.53 0.007

Mo-Mo2 0.3 2.97 0.006Mo2C/NCHPb

Mo-C 1.7 1.89 0.009

1.3 0.009
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Mo-Mo1 0.7 2.71 0.010

Mo-Mo2 1.8 2.99 0.007

Mo-C 1.2 2.02 0.001
Mo2C/Co/NCHPd

Mo-O 0.9 1.75 0.001

7.3 0.009

Mo-O1 0.6 1.65 0.003

Mo-O2 1.2 1.96 0.001
Commercial 

MoO3
d

Mo-O3 0.9 2.11 0.001

-7.2 0.008

aN, coordination number; σ2, Debye-Waller factor to account for both thermal and structural 
disorders; ΔE0, inner potential correction; R, R factor indicating the goodness of the fit. Error 
bounds (accuracies) that characterize the structural parameters obtained by EXAFS spectroscopy 
are estimated as N ± 20%; R ± 1%; σ2 ± 20%; E0 ± 20%. S0

2 is fixed to 0.93 as determined from 
Mo foil fitting. Bold numbers indicate fixed coordination number (N) according to the crystal 
structure. Mo-Mo1 and Mo-Mo2 represent the first and second nearest Mo atoms to the central 
Mo atom. Similarly, O1, O2, and O3 represent the first, second, and third nearest neighbor 
coordination O atoms. bFitting range: 3.2 ≤ k (/Å) ≤ 15.7 and 2.0 ≤ R (Å) ≤ 3.1. cFitting range: 3.1 
≤ k (/Å) ≤ 15.7 and 1.5 ≤ R (Å) ≤ 3.3. dFitting range: 3.0 ≤ k (/Å) ≤ 12.5 and 1.2 ≤ R (Å) ≤ 2.2.

Figure S12. EXAFS fitting spectra for (a) Mo foil, (b) Co-Mo2C/NCHP, (c) Mo2C, (d) 

Mo2C/NCHP, (e) Mo2C/Co/NCHP, and (f) MoO3. The corresponding fitting parameters are listed 

in Table S2.
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Figure S13. Comparison of the cell voltages required to achieve 10 mA/cm2 of Co-Mo2C/NCHP 

in 1 M KOH using different alkaline water electrolyzers.1-6

Figure S14. HER polarization curves at a scan rate of 0.05 V/s in 1.0 M KOH.
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Figure S15. Cyclic voltammograms of (a) Co/NCHP, (b) Mo2C/NCHP, (c) Mo2C/Co/NCHP, and 

(d) Co-Mo2C/NCHP, recorded in potential region between 1.0 and 1.1 VRHE at scan rates ranging 

from 10 to 50 mV/s in H2-saturated 1 M KOH solution.

Figure S16. Scan rate dependence of the capacitive current densities for Co/NCHP, Mo2C/NCHP, 

Mo2C/Co/NCHP, and Co-Mo2C/NCHP. The capacitive current densities are the sum of the anodic 

and cathodic current densities at 1.05 VRHE, derived from the data in Figure S15.
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Figure S17. Anion exchange membrane water electrolysis single-cell performance of Co-

Mo2C/NCHP and Pt/C cathode with IrO2 anode.

Figure S18. Chronopotentiometry results measured at a current density of 0.5 A/cm2 of the 

AEMWE single cells using Co-Mo2C/NCHP as anode catalysts.

12



Figure S19. The results of H adsorption on individual Co and Mo2C models and on the Co/C 

interface and the Co/Mo interface in Co-Mo2C heterostructure.

Figure S20. The charge density difference of Co-Mo2C, divided by the Co/Mo interface and the 

Co/C interface. The iso-surface level is set as 0.01 e/ 3.Å
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Table S3. The charge density difference in the Co-Mo2C model.

Charge Density Difference Co Mo C

Co/C Interface +2.22 e -0.65 e -1.45 e

Co/Mo Interface -2.47 e +2.65 e -0.18 e

Total -0.25 e +1.99 e -1.74 e

Figure S21. The Gibbs free energy of H adsorption on the Co site and the Mo2C site in Co-Mo2C 

heterostructure.
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Figure S22. The results of water dissociation mechanisms on individual Co and Mo2C models and 

on Co-Mo2C heterostructure.  

Figure S23. IR-corrected HER polarization curves at a scan rate of 0.05 V/s in 1.0 M PBS.
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Figure S24. IR-corrected HER polarization curves of Pt/C.

Figure S25. IR-corrected HER polarization curves of (a) Co/NCHP, (b) Mo2C/NCHP, and (c) 

Mo2C/Co/NCHP.
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Figure S26. TEM images after 1000 potential cycles and Mo concentration determined by ICP for 

(a-b) Mo2C/Co/NCHP and (c-d) Co-Mo2C/NCHP.
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Figure S27. (a) XRD patterns, (b) Raman spectra, (c) Co 2p3/2 XPS spectra, and (d) Mo 3d 

spectra of Co-Mo2C/NCHP before and after 1000 HER potential cycles.
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