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Fig. S1 SEM images and diameter distribution histograms of the PAN nanofibers electrospun 

from different commercial sources.
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Fig. S2 Piezoelectric outputs of the nanofiber devices with different thicknesses (working area 

5 cm2; impacting frequency 1 Hz).
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Fig. S3 Piezoelectric outputs of the nanofiber devices under different impacting frequencies 

(working area 5 cm2; thickness 60 μm).



S-5

Fig. S4 U~R, I~R, and P~R curves of the PAN devices.
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Fig. S5 GPC curves of the PAN powder from different commercial sources.
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Fig. S6 FTIR spectra of PAN raw materials from different commercial sources.
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Fig. S7 The split peak fits at 1250 cm-1 and 1230 cm-1 for a) PAN powder and b) the as-spun 

PAN nanofibers from different commercial sources.
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Fig. S8 liquid-state 1H-NMR PAN raw materials from different sources (solvent DMSO-d6).
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Fig. S9 13C-NMR spectra of PAN raw materials from different sources (solvent DMSO-d6).
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Fig. S10 Contact angle of the PAN nanofiber membranes prepared from different PAN sources.
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Fig. S11 Picture of the water contact angle of a) PAN nanofiber membranes subjected to a 

humid environment (80% RH) to absorb water, and b) after removing the absorbed water at 

elevated temperature.
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Fig. S12 The water content of after moisture-absorbing samples drying relative to the sample 

dried before absorption.
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Fig. S13 a) Voc and b) Isc, and c) Isc-pp of PAN nanofiber membranes after residual charge 

removal. (Membrane thickness 60 µm; working area 5 cm2)
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Fig. S14 a) Dielectric constant and b) Dielectric loss of (Ⅰ) dried PAN nanofibers, (Ⅱ) absorbed 

in a humid environment (RH-80%), and (Ⅲ) finally dried again.
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Table S1 Voltage outputs of electrospun PAN nanofiber nonwoven devices reported in the previous literature

Working areas Force
Impact 

frequency

Voltage 

outputs
PAN sources Research purposes/applications Ref.

5 cm2 -

Deflection 

rate

0.1 mm/s

3.2 V - Structural health monitoring S1

2.5×2.5 cm2 15 N 10 Hz 0.85 V Sinopharm Chemical Reagent Nanogenerators S2

4 cm2 0.5 N 5 Hz 20 mV Macklin Flexible piezoelectric membrane S3

4×1.2 cm2 - 10 Hz 2.2 V Sigma-Aldrich Piezoelectric S4

5×5 cm2 6 kPa 3 Hz 0.5 V Sigma Co. Ltd. Flexible sensor S5

4×4 cm2 - - 3.2 V Macklin Flexible piezoelectric sensors S6

3×3 cm2 0.23 N 3 Hz 1.5 V Macklin Flexible piezoelectric sensors S7

3×3 cm2 2 N 3 Hz 1.3 V Macklin Piezoelectric sensors S8

4×4 cm2 - - 10 V Macklin Flexible touch sensor S9

2×2 cm2 - 1 Hz 1.6 V Dupont Company Self-powered wearable sensor S10

4×4 cm2 12.5 kPa 1 Hz 1.6 V Beijing J&K SCIENTIFIC LTD Piezoelectric composite fibers S11

5 cm2 - 2 Hz 2 V Spectrum Chemical Manufacturing Corp Piezoelectricity S12

4×4 cm2 8 N 2 Hz 2.4 V Beijing JinBeiNuo Technology Co., Ltd. Piezoelectric Nanogenerators S13

3×3 cm2 ~20 N 7 Hz 0.57 V Pasupati Acrylon Private Limited Piezoelectric Nanogenerator S14

4×2 cm2 0.2 N 5 Hz 5 mV Macklin
Flexible Conductive-Piezoelectric 

Nanoresistance Network Material
S15
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Table S2 Mw and PDI data of the PAN powder measured by GPC method

PAN sources Mw (×105, g/mol) Measured Mw (×105, g/mol) PDI

SA 1.5 21.3 10.8

JK 1.5 24.5 10.9

AL 1.5 51.4 11.5

SP 0.9 68.4 228.8

MA 1.5 25.5 15.7
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Table S3 FTIR peak assignment of PAN powder and nanofibers

Wavenumber/cm-1 SA JK AL MA SP
2940 -CH2-
2244 C≡N
1730 - C=O
1453 -CH2-
1250 Zig-zag
1230 31-helical
1173 - C-O
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Table S4 NMR peak assignment of PAN powder

ppm SA JK AL MA SP
12.5 - - - - -COOH
7.9 C-H of DMF

7.7, 7.5, 6.7 - - -NH2 - -
7.1 NH4

+

4.15, 3.9 -CH of monomer
3.67 - - - -OCH3

3.14 -CH of polymer
2.89, 2.72 The methine protons of monomer

2.04 -CH2- of polymer

1H-NMR

0.8-0.9 The terminal proton of a copolymer chain
173 - - - C=O

120.5 -CN
52 - - - -OCH3

32.6 -CH2-

13C-NMR

27.2 -CH-
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Table S5 NMR peak integration data and structural regularity of PAN powder and nanofibers

Test

Type
ppm/
vertical 
structure regularity

SA JK AL MA SP

12.5 - - - - 2.27
7.10 0.37 0.10 0.71 0.60 0.87

7.7, 7.5, 6.7 - - 1.01 - -
3.67 - - - 3.41 1.44
3.14 32.67 32.87 32.41 30.50 30.59

1H-NMR

2.04 66.96 67.03 65.77 65.49 64.82
rr 0.21 0.21 0.22 0.20 0.22
mr 0.50 0.50 0.50 0.52 0.51
mm 0.29 0.29 0.28 0.27 0.28

Powder

13C-NMR

m/% 54.0 54.0 53.0 53.0 53.5
12.4 - - - - 0.45
7.10 0.41 0.22 0.22 0.39 0.16

7.7, 7.5, 6.7 - - 0.26 - -
3.67 - - - 3.98 2.33
3.12 32.02 32.42 33.13 29.45 30.62

1H-NMR

2.00 67.58 67.35 66.38 66.19 66.43
rr 21.92 21.84 22.61 21.20 21.50
mr 49.12 49.58 48.85 50.33 50.93
mm 28.96 28.58 28.53 28.47 27.57

Nanofiber

13C-NMR

m/% 53.52 53.37 53.00 53.64 53.04
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Table S6 Peak assignment for solid-state 13C-NMR spectra

SA JK AL MA SP
C=O - - - 173.0
C≡N 119.40 118.74 118.12 118.41 118.74
-OCH3 - - - 52.0 -

Powder

CH、CH2 27.40
C=O - - - 173.0
C≡N 119.44 119.78 119.15 119.15 119.44
-OCH3 - - - 52.0

Nanofiber

CH、CH2 27.40
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Table S7 Element content of PAN nanofibers obtained from XPS spectra

Type
Element 
content (%)

SA JK AL MA SP

C 75.54 74.85 75.72 75.42 75.45
C-C/C-H 63.48 62.90 65.27 58.92 60.85

C≡N 12.06 11.95 7.83 14.73 12.78
C=O - - - 1.76 1.83

-CONH2 - - 2.61 - -
N 21.84 22.71 17.51 20.49 20.25

C≡N 13.4
-CONH2 4.14

O 2.15 1.95 5.45 3.47 4.17
S 0.31 0.35 0.59 0.35 0.07
Na 0.16 0.14 0.73 0.28 0.06
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Table S8 Mechanical properties of electrospun PAN nanofiber membranes from different papers

Sources Mw (×105, 
g/mol)

Concentration 
(wt%)

Diameter 
(nm)

Yong’s 
modulus (MPa)

Tensile 
strength (MPa)

Elongation at 
break (%) Additives Ref.

Sigma-Aldrich 1.5 - 515±01 2.95 95 S16
Lukoil Neftochim 0.45 17 - 23.6±3.0 1.3±0.3 56.3±3.0 Sodium vinylsulfonate 1.4%) S17

Shanghai Chemical 
Fibers Institute 0.9 10 - 40±10 0.61±0.12 5.89±0.95 - S18

Aladdin 1.5 10 300 - 27.5±0.5 20.1±0.3 - S19
Institute of Shanghai 

Petrochemical 0.8 12 204±45 0.84 0.043 25.5 - S20

Sigma Aldrich 1.5 10 400 0.6 0.29 200 - S21
Sigma Aldrich 1.5 10 - 160±8 55.2±2.2 - - S22

Aladdin 0.7 14 - 1.13 4.53 41.03 - S23
Shenzhen Xiangu High-

Tech. Co., Ltd - 10 - - 2.21 - - S24

Taekwang Company 1-2 15 - 10.3±5.4 20.3±0.6 50.2±8.3 Methyacrylate (8.6%) S25
Scientific Polymer 

Products 1.5 8 - 19.6 1.09 27 - S26

Sinopharm Chemical 
Reagent Co. Ltd. - 10 - 15.01 0.16 10.47 - S27

Stable 3 22 3180.46 39.49 2.50 - - S28
Aldrich 0.15 7 20.9 12.09 5.73 63 - S29

Sigma Aldrich 1.5 7 515.34±75.45 69.78±19.28 10.58±2.04 8.47±2.24 - S30
Sigma-Aldrich 1.5 9 320±100 117.35±28.98 8.33±0.26 130.85±24.61 - This work

J&K 1.5 9 330±100 78.28±3.51 9.10±0.37 171.66±33.26 - This work
Aladdin 1.5 9 320±100 69.31±1.13 2.79±0.41 30.96±7.92 - This work
Macklin 1.5 14 360±50 152.83±14.24 4.90±0.21 13.46±0.41 - This work
Spectrum 0.9 12 330±10 220.14±51.09 2.42±0.23 2.79±0.50 - This work
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