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S1 Supplementary Note 1

Evaluation Metrics In this study, the Pearson correlation coefficient (PCC) is used in the energy pre-

diction, and it is defined as below:

PCC =

∑
(xi − x̄)(yi − ȳ)√∑

(xi − x̄)2
∑

(yi − ȳ)2
(1)

where xi is the value of the x variable in ith sample, x̄ is the mean of the values of the x variable, yi is the

value of the y variable in the ith sample, ȳ is mean of the values of the y variable. The PCC explains the

relationship between the x variable and y variable.

The root mean squared error (RMSE) is defined as below:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

where yi and ŷi are predicted value and true value of ith sample respectively.

The mean absolute error (MAE) measures the mean difference between the prediction and the true

value,

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

where yi and ŷi are predicted value and true value of ith sample respectively.

GBDT parameters. In the machine learning task, we use the gradient boosted decision trees (GBDT)

algorithm to predict the multi-atom system’s energy. The ‘n estimators’ is setting to 15000, ‘max depth’ is

setting to 7, ‘min samples split’ is setting to 5, 0.8 of the subsample is used, and the learning rate of the

model is setting to 0.001. All other parameters were using the default values in the algorithm.[1]
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S2 Supplementary Note 2: Figures

Supplementary Figure S1: Illustration of the matrix representation of the boundary operator.
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Supplementary Figure S2: Two-dimension PCA embedding of the representation on PLT features. The colored points

correspond to structures with different atomic numbers. More points of the same color clustered together, indicating a

better clustering result.

Supplementary Figure S3: Persistent homology analysis for three specific multi-atom systems. a and b show the topological

fingerprints for two Li10 structures. The structure in a has the binding energies of -0.757 eV/atom. The binding energy of

structure in a is -0.910 eV/atom. c shows the structure contains 40 atoms and has a richer topological information, and its

binding energy is -1.183 eV/atom.
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Supplementary Figure S4: Simplicial complex and boundary operator. a Illustration of 0-simples, 1-simplex, and 2-simplex.

b Boundary maps take k-chains to their boundaries. The example shown in the figure (red sphere) is for dimensions 1

through 3. The empty set is denoted by ∅, and ∂k with k=0, 1, 2, 3 represents the boundary operator of the corresponding

dimension. c Illustration of k-cycles with k=0, 1, and 2 (purple shperes). For 1-cycles and 2-cycles, a trivial cycle (left)

and a non-trivial (cavity-enclosing) cycle (right) are demonstrated. d Vietoris-Rips complex from a point cloud.
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S3 Supplementary Note 3: Tables

Dataset The original dataset is generated from DFT calculations and it is derived from our previous

work.[2] All structures and energies are contained in one file. For the file containing all data, each row

contains the number of atoms, the coordinates, and the binding energy in eV per atom. The first number

of each row is the number of atoms contained in the structure, the last data is the corresponding binding

energy, and the rest of the data are the 3D coordinates of the atoms in the structure.

Supplementary Table S1: Statistic information of all multi-atom systems. Energy unit is eV/atom.

Datasets Structures Maximum Energy Minimum Energy Mean Energy Median Energy

Li4 8326 1.7337 -0.6567 -0.5258 -0.5734

Li5 20988 2.1347 -0.7087 -0.5354 -0.6172

Li6 20977 2.0881 -0.8346 -0.6275 -0.6962

Li7 20998 2.0502 -0.9051 -0.6406 -0.7259

Li8 21000 2.1364 -0.9462 -0.6739 -0.7552

Li9 20999 1.4381 -0.9495 -0.6841 -0.7793

Li10 20999 1.0743 -0.9927 -0.7089 -0.8059

Li20 1000 -0.3215 -1.1052 -0.9084 -0.9488

Li40 1000 -0.3905 -1.1832 -0.9541 -0.9899

Supplementary Table S2: Prediction results for Li20 and Li40 clusters by using L0, L01, L012, L1, L2, and L12

Tasks Feature type MAE RMSE PCC

Li20 L0 0.079 0.084 0.982

Li20 L01 0.139 0.145 0.968

Li20 L012 0.174 0.182 0.944

Li20 L1 0.293 0.302 0.925

Li20 L2 0.650 0.667 0.762

Li20 L12 0.267 0.277 0.899

Li40 L0 0.119 0.126 0.968

Li40 L01 0.27 0.274 0.954

Li40 L012 0.302 0.308 0.925

Li40 L1 0.689 0.707 0.922

Li40 L2 0.905 0.921 0.891

Li40 L12 0.578 0.606 0.894
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Supplementary Table S3: Prediction results for Li20 and Li40 clusters by using L0, β01, β012, β1, β2, and β12

Tasks Feature type MAE RMSE PCC

Li20 β0 0.139 0.158 0.508

Li20 β01 0.118 0.134 0.742

Li20 β012 0.113 0.126 0.771

Li20 β1 0.122 0.145 0.603

Li20 β2 0.185 0.212 0.451

Li20 β12 0.117 0.138 0.611

Li40 β0 0.203 0.221 0.592

Li40 β01 0.18 0.192 0.801

Li40 β012 0.168 0.179 0.817

Li40 β1 0.134 0.158 0.35

Li40 β2 0.195 0.219 0.555

Li40 β12 0.125 0.152 0.385
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Supplementary Table S4: Evaluation of five-fold cross-validation for Lin clusters (n = 4, 5, 6, 7, 8, 9, 10, 20, 40).

Lin cluster Feature MAE RMSW Pearson Lin cluster Feature MAE RMSW Pearson

4 β0 0.034 0.045 0.975 9 β0 0.044 0.055 0.98

4 β01 0.031 0.045 0.978 9 β01 0.037 0.045 0.985

4 β012 0.031 0.045 0.978 9 β012 0.036 0.045 0.985

4 β1 0.108 0.205 0.058 9 β1 0.152 0.245 0.489

4 β2 0.11 0.205 0 9 β2 0.185 0.277 0.141

4 β12 0.108 0.205 0.058 9 β12 0.15 0.243 0.497

5 β0 0.035 0.045 0.983 10 β0 0.041 0.055 0.981

5 β01 0.033 0.045 0.985 10 β01 0.034 0.045 0.987

5 β012 0.033 0.045 0.985 10 β012 0.034 0.045 0.987

5 β1 0.142 0.247 0.248 10 β1 0.145 0.23 0.547

5 β2 0.151 0.253 0 10 β2 0.185 0.27 0.166

5 β12 0.142 0.247 0.248 10 β12 0.143 0.228 0.558

6 β0 0.044 0.055 0.974 20 β0 0.031 0.045 0.96

6 β01 0.039 0.055 0.978 20 β01 0.019 0.032 0.985

6 β012 0.04 0.055 0.978 20 β012 0.017 0.032 0.988

6 β1 0.142 0.239 0.266 20 β1 0.04 0.055 0.922

6 β2 0.152 0.247 0.027 20 β2 0.091 0.126 0.553

6 β12 0.142 0.239 0.267 20 β12 0.037 0.055 0.93

7 β0 0.045 0.055 0.976 40 β0 0.028 0.032 0.976

7 β01 0.039 0.055 0.98 40 β01 0.019 0.032 0.988

7 β012 0.039 0.055 0.98 40 β012 0.017 0.032 0.99

7 β1 0.154 0.247 0.355 40 β1 0.037 0.055 0.937

7 β2 0.172 0.265 0.077 40 β2 0.073 0.11 0.733

7 β12 0.153 0.247 0.356 40 β12 0.033 0.055 0.948

8 β0 0.052 0.063 0.972

8 β01 0.045 0.055 0.977

8 β012 0.044 0.055 0.978

8 β1 0.158 0.251 0.42

8 β2 0.181 0.274 0.133

8 β12 0.156 0.251 0.427

7



References
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