Supporting Information

Microscale Homogeneous Refinement of CaO/Ca(OH)₂ Particles for enhancing Thermochemical Energy Storage Performance

Guangyao Zhao, *ab Zhehui Zhao, ab Sixing Zhang, ab Jiakang Yao, ab Na Cheng, ab Zhen Li, ab Yu Han ab and Xiaotao Zhang *c

a. China Electric Power Research Institute, Beijing 100192, China;

b. State Key Laboratory of Advanced Power Transmission Technology, Beijing China;

c. Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.

1. Supporting Figures

Fig. S1. Particle size distributions of Pure CaO and HFM-CaO.

Fig. S2. Particle size distributions of Pure CaO and HFM-CaO.

Fig. S3. Nitrogen adsorption-desorption isotherms of HFM-CaO samples with different C₃N₄ doping ratios: (a) HFM-CaO-5, (b) HFM-CaO-10, (c) HFM-CaO-20, (d) HFM-CaO-35, (e)

HFM-CaO-50, and (f) HFM-CaO-70.

Fig. S4. TG curves of $C_3N_{4.}$

Fig. S5. SEM photographs of the (a, b, c) Pure Ca(OH)₂ and (d, e, f) HFM-Ca(OH)₂-30

dehydration-hydration products.

Fig. S6. TEM photographs of the (a) Pure Ca(OH)₂ and (b) Pure Ca(OH)₂ physical mixture with $C_3N_{4.}$

Table S1. Grain

samples calculated

formula.

Sample name	Grain size
	(nm)
Pure Ca(OH) ₂	50.79
HFM-10	77.96
HFM-30	94.34
HFM-50	84.86
HFM-70	83.17

size of representative

according to Scherrer's