Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supplementary information

Experimental and Theoretical Insight into the Support-Dependent N₂ Selectivity of CuO-based NH₃-SCO Catalysts

Mingchu Ran^a, Yi Dong^{a,b}, Xiao Zhang^{a,b,c,*}, Saisai Lin^a, Peng Liu^{a,c}, Yang Yang^a, Hao Song^a, Xuesen Du^d, Chenghang Zheng^{a,b,c}, Xiang Gao^{a,b,c,*}

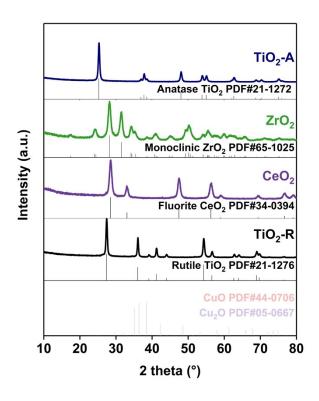
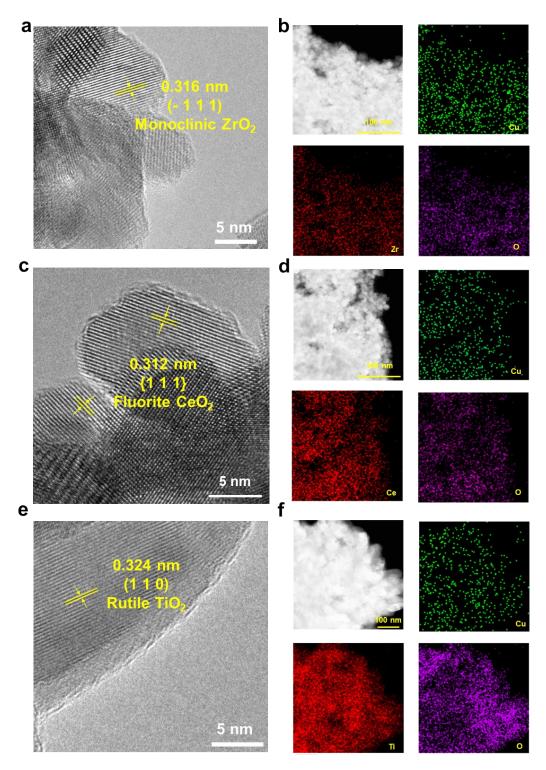
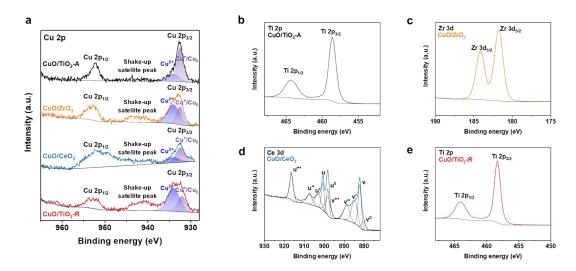
^aState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China

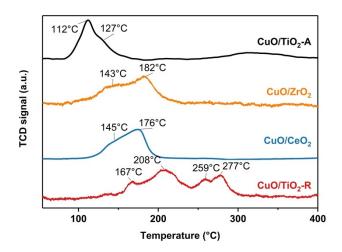
^bZhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China

^cJiaxing Research Institute, Zhejiang University, Jiaxing 314000, China

^dKey Laboratory of Low-Grade Energy Utilization Technologies and Systems of Ministry of Education of China, Chongqing University, Chongqing 400044, China

*To whom correspondence may be addressed. Email: <u>xgao1@zju.edu.cn</u> (X. Gao); zhangx energy@zju.edu.cn (X. Zhang).


Figure S1. XRD patterns of the supports.

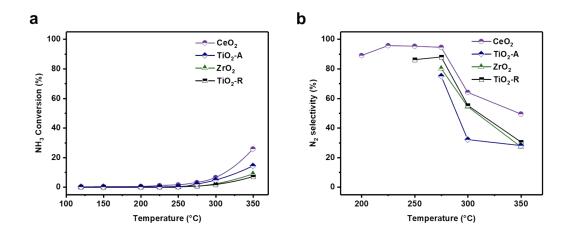

Figure S2. (a, c, e) HRTEM image of CuO/ZrO₂, CuO/CeO₂ and CuO/TiO₂-R. (b, d, f) EDS mapping of CuO/ZrO₂, CuO/CeO₂ and CuO/TiO₂-R.

Figure S3. XPS results. (a) Cu 2p spectrum. (b) Ti 2p spectrum of CuO/TiO₂-A. (c) Zr 3d spectrum of CuO/ZrO₂. (d) Ce 3d spectrum of CuO/CeO₂. (e) Ti 2p spectrum of CuO/TiO₂-R.

Figure S4. H₂-TPR results of the catalysts.

Figure S5. Catalytic performance evaluation of the metal oxide supports. (a) NH_3 conversion. (b) N_2 selectivity. Reaction conditions: 500 ppm NH_3 , 5 vol% O_2 , Ar as balance gas, total flow rate = 200 sccm, GHSV = 60000 cm³ g_{cat}^{-1} h⁻¹.

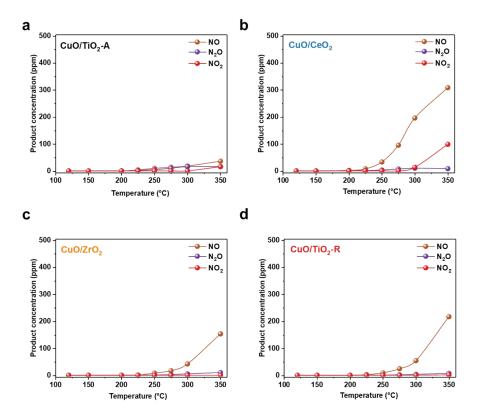
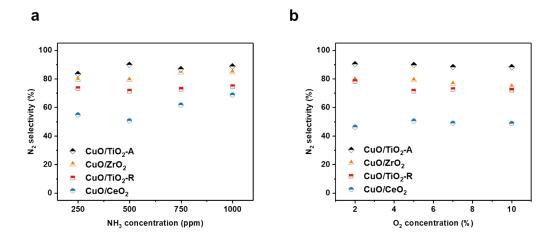
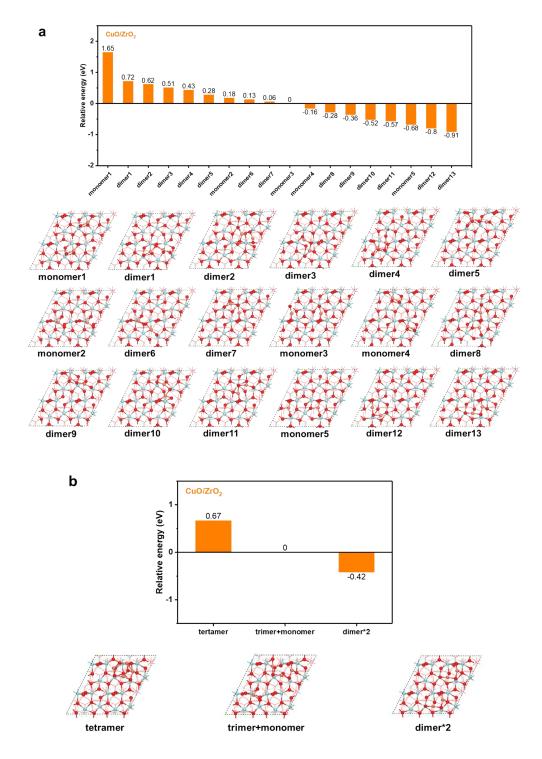
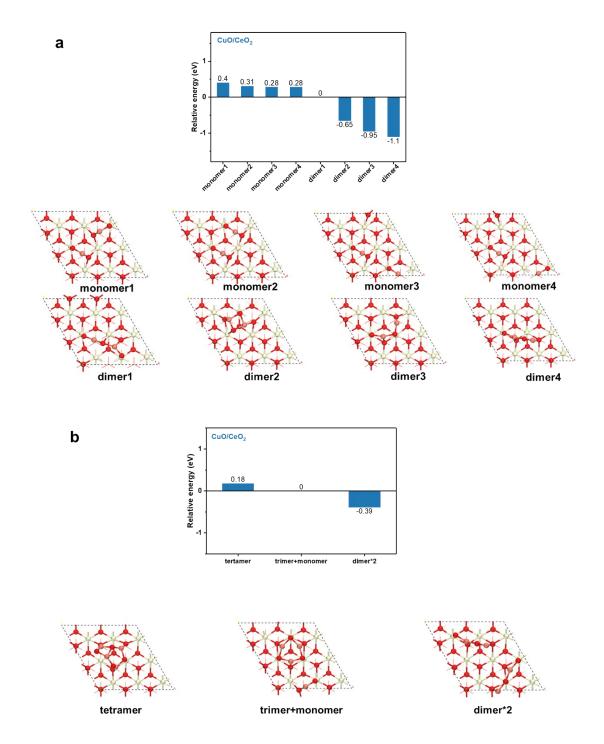
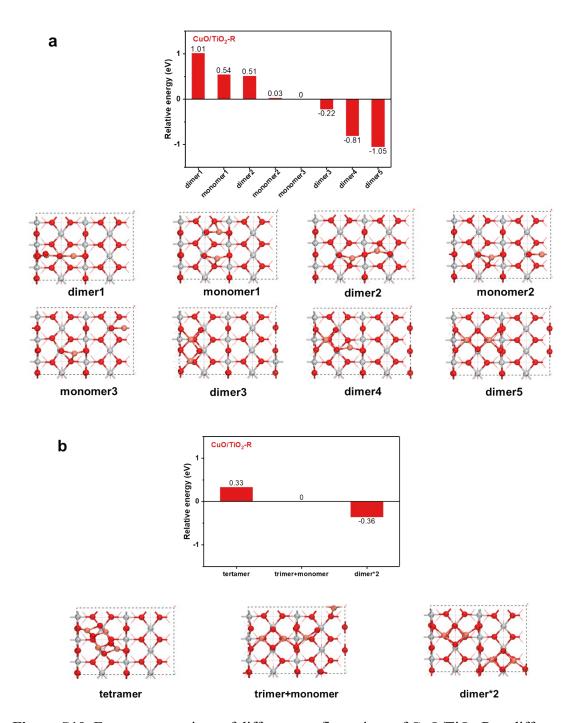
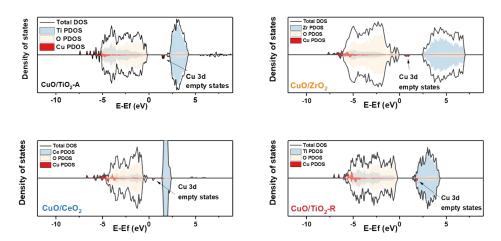
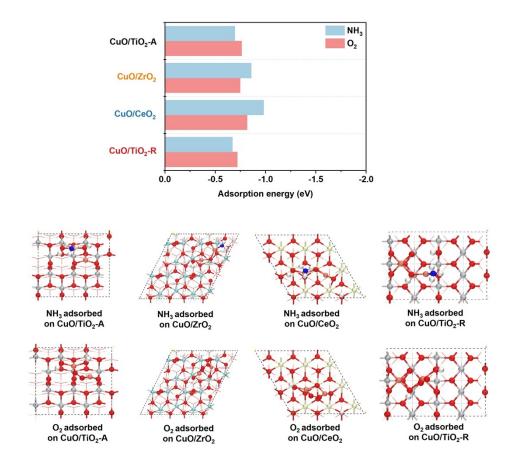


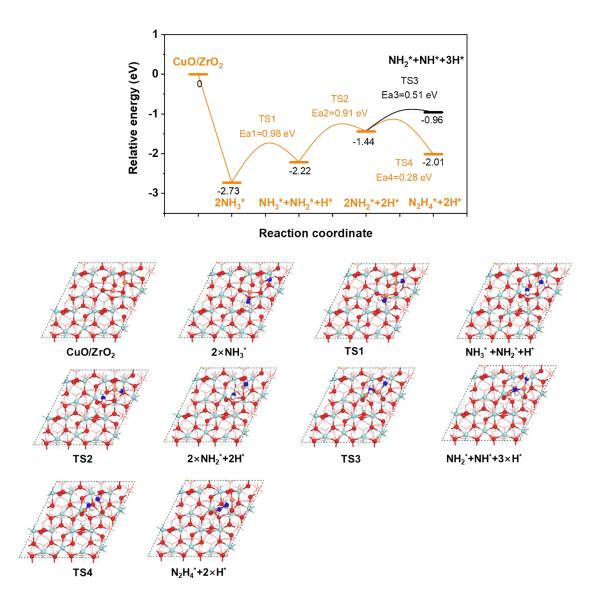
Figure S6. Byproduct analysis of different catalysts.


Figure S7 Influence of reactant concentration on the N_2 selectivity at 250°C.


Figure S8. Energy comparison of different configurations of CuO/ZrO₂ at different surface Cu density. (a) 2 CuO in each periodic cell. (b) 4 CuO in each periodic cell. Red, orange and green balls represent O, Cu, and Zr respectively.


Figure S9. Energy comparison of different configurations of CuO/CeO₂ at different surface Cu density. (a) 2 CuO in each periodic cell. (b) 4 CuO in each periodic cell. Red, orange and yellow balls represent O, Cu and Ce respectively.


Figure S10. Energy comparison of different configurations of CuO/TiO₂-R at different surface Cu density. (a) 2 CuO in each periodic cell. (b) 4 CuO in each periodic cell. Red, orange and gray balls represent O, Cu and Ti respectively.

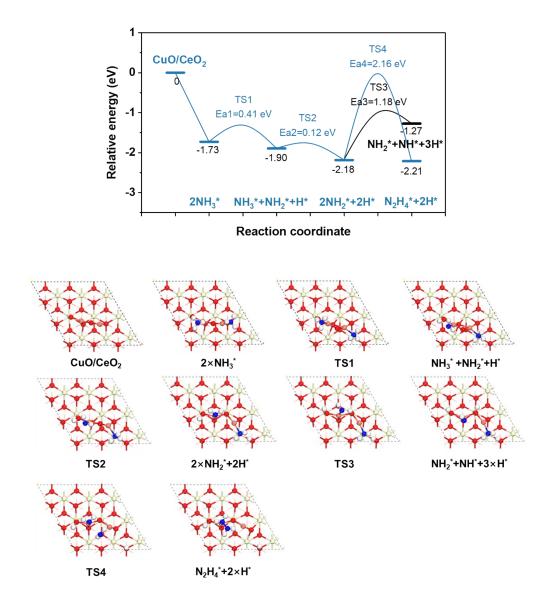

Figure S11. Projected density of states results of CuO/TiO₂-A, CuO/ZrO₂, CuO/CeO₂ and CuO/TiO₂-R theoretical models.


Figure S12. Energy of NH₃ and O₂ adsorption on catalysts during NH₃-SCO. Red, orange, blue, white, gray, green and yellow balls represent O, Cu, N, H, Ti, Zr and Ce respectively.

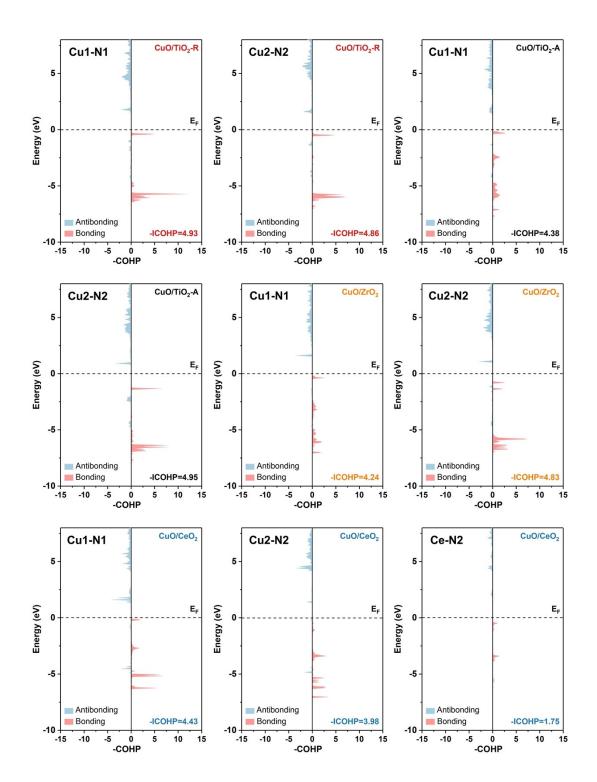

Figure S13. Energy diagram and optimized structures of all the intermediates and transition states for NH_3 transformation to N_2H_4* or NH* over CuO/ZrO_2 in this manuscript. Red, orange, blue, white and green balls represent O, Cu, N, H, and Zr respectively.

Figure S14. Energy diagram and optimized structures of all the intermediates and transition states for NH₃ transformation to N_2H_4* or NH* over CuO/CeO₂ in this manuscript. Red, orange, blue, white and yellow balls represent O, Cu, N, H, and Ce respectively.

Figure S15. Energy diagram and optimized structures of all the intermediates and transition states for NH_3 transformation to N_2H_4* or NH* over CuO/TiO_2-R in this manuscript. Red, orange, blue, white and gray balls represent O, Cu, N, H, and Ti respectively.

Figure S16. Crystal orbital Hamilton population analysis of N-Cu and N-Ce bonds in $2NH_2*+2H*$ intermediate states of different catalysts.

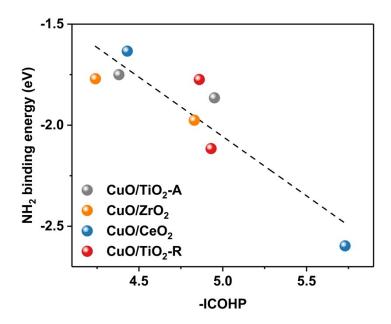


Figure S17. Relations between -ICOHP of catalyst-N and NH₂ binding energy.

Table S1 Cu mass ratio obtained by ICP-OES.

(%)
1
5
)
3

 $\label{eq:s2} \textbf{Table S2} \ \mbox{BET surface area, pore diameter and pore value of the catalysts and supports}$ evaluated by N_2 adsorption.

Sample	BET specific surface area	Pore diameter	Pore volume
	$(m^2 g^{-1})$	(nm)	(cm ³ g ⁻¹)
CuO/TiO ₂ -A	60	12.22	0.19
CuO/ZrO ₂	65	13.96	0.22
CuO/CeO ₂	70	5.76	0.10
CuO/TiO ₂ -R	26	23.18	0.14
TiO ₂ -A	87	9.72	0.23
ZrO ₂	78	12.44	0.23
CeO ₂	70	5.72	0.10
TiO ₂ -R	27	25.63	0.13

Table S3 Surface Cu density of the catalysts

Sample	Surface Cu density	Surface Cu density in		
	in experiment ^a	computation b		
	(Cu nm²)	(Cu nm²)		
CuO/TiO ₂ -A	1.44	1.67		
CuO/ZrO ₂	1.24	1.22		
CuO/CeO ₂	1.12	1.75		
CuO/TiO ₂ -R	3.02	1.67		

^a Obtained combining ICP-OES result and BET surface area.

^b Obtained by calculating the Cu density in each periodic cell of theoretical model.

Table S4. Reaction energy (eV) and energy barriers (eV).

CuO/TiO ₂ -A ^a		CuO/ZrO ₂		CuO/CeO ₂		CuO/TiO ₂ -R	
E	Ea	E	Ea	E	Ea	E	Ea
-2.40	\	-2.73	\	-1.73	\	-2.48	\
-0.02	0.65	0.51	0.98	-0.17	0.41	0.35	0.46
1.05	1.07	0.78	0.91	-0.28	0.12	0.33	0.37
1.75	2.66	0.48	0.51	0.91	1.18	0.94	1.43
-0.61	0.88	-0.57	0.28	-0.03	2.16	-0.20	1.68
	-2.40 -0.02 1.05 1.75	E Ea -2.40 \ -0.02 0.65 1.05 1.07 1.75 2.66	E Ea E -2.40 \ -2.73 -0.02 0.65 0.51 1.05 1.07 0.78 1.75 2.66 0.48	E Ea E Ea -2.40 \ -2.73 \ -0.02 0.65 0.51 0.98 1.05 1.07 0.78 0.91 1.75 2.66 0.48 0.51	E Ea E Ea E -2.40 \ -2.73 \ -1.73 -0.02 0.65 0.51 0.98 -0.17 1.05 1.07 0.78 0.91 -0.28 1.75 2.66 0.48 0.51 0.91	E Ea E Ea E Ea -2.40 \ -2.73 \ -1.73 \ -0.02 0.65 0.51 0.98 -0.17 0.41 1.05 1.07 0.78 0.91 -0.28 0.12 1.75 2.66 0.48 0.51 0.91 1.18	E Ea E Ea E Ea E -2.40 \ -2.73 \ -1.73 \ -2.48 -0.02 0.65 0.51 0.98 -0.17 0.41 0.35 1.05 1.07 0.78 0.91 -0.28 0.12 0.33 1.75 2.66 0.48 0.51 0.91 1.18 0.94

^a Details of energy diagram and intermediate structure of CuO/TiO₂-A could be found in our previous research.¹

REFERENCES

1. M. C. Ran, Y. Dong, X. Zhang, W. X. Li, Z. Wang, S. S. Lin, Y. Yang, H. Song, W. H. Wu, S. J. Liu, Y. H. Zhu, C. H. Zheng and X. Gao, *Environ. Sci. Technol.*, 2024, **58**, 12249–12259.