Polymer Electrolytes for Potassium-based Batteries: Incorporating Ionic Liquids to Enhance the Room Temperature Ionic Conductivity

Jinyu Chen^{a,b}, Sohelia Ebrahimi^c, Boyan Iliev^d, Yuval Steinberg^e, Michal Leskes^e, Thomas J. S. Schubert^d, Elizabeth Castillo-Martínez^c, Dominic Bresser^{a,b}, Maider Zarrabeitia^{*a,b}

^a Helmholtz Institute Ulm (HIU), Helmholtzstasse 11, 89081 Ulm, Germany

^b Karlsruhe Institute of Technology (KIT), P.O.Box 3640, 76021 Karlsruhe, Germany

^c Department of Inorganic Chemistry, Universidad Complutense de Madrid, 28040, Madrid, Spain

^d Iolitec Ionic Liquids Technologies GmbH, Im Zukunftspark 9, 74076 Heilbronn, Germany

^e Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel

EXPERIMENTAL DETAILS

Structural characterisation

The structural properties of solvent-free SPEs were analysed by XRD using Bruker D8 Advance diffractometer in the 2 θ range from 10° to 90° with a step size of 0.02°. PXRD of PW were collected with an Empirean Panalytical diffractometer in the 2 θ range from 10° to 80° with a step size of 0.02°. PW was also investigated with FTIR, the FTIR spectra were collected by adding 4 scans in the 400-4000 cm⁻¹ wavenumber range with 4 cm⁻¹ resolution.

Thermal characterisation

TGA (TG 209F1 Libra, Netzsch) and DSC (Discovery DSC, TA Instruments) were used to analyse the thermal stability and phase transition behaviour of solvent-free SPEs. All solvent-free SPE membranes were sealed in Al pans. TGA experiments were performed and underwent a 30 min isothermal step at 30 °C, followed by heating up to 600 °C at a rate of 5 K min⁻¹ under an inert N₂ atmosphere. In the case of DSC analysis, an isothermal equilibration step at 40 °C for 30 min was conducted, followed by one cooling and heating cycle between -100 °C and 100 °C. The cooling and heating rates were 5 K min⁻¹, and isothermal holds of 30 min were maintained at the turning points. All TGA and DSC measurements were performed in duplicate. The glass transition temperatures (T_g) were determined by the midpoint method, averaging the values obtained from all heating traces. By employing these experimental procedures, the thermal stability and phase transition behaviour of all solvent-free SPEs were effectively characterized, avoiding unnecessary repetition of steps.

EIS for ionic conductivity calculation

Pouch-cell configuration was employed to construct symmetric Cu | Cu blocking cells with a geometrical electrode area of 9 cm². The temperature-dependent conductivity of solvent-free SPEs was determined using EIS with a potentiostat-galvanostat (Solartron SI 1287, AMETEK) and a frequency response analyser (Solartron SI 1260, AMETEK), applying a 10 mV AC potential amplitude across a frequency range of 1 MHz to 1 Hz. For temperature control, the measurements were performed in a climatic chamber (Binder GmbH), and pouch cells were allowed to equilibrate for 3 h after a temperature change. A representative impedance spectrum and the equivalent circuit are used to fit the data.

LSV for electrochemical stability window

The electrochemical stability of solvent-free SPEs was evaluated in two-electrode cells assembled in CR2032 coin-cell type utilising Al as a working electrode and K as a counter and reference electrode. LSV was performed to a lower limit of -2 V and an upper limit of 7 V vs K⁺/K at a scan rate of 0.1 mV s⁻¹ with a multi-channel potentiostat-galvanostat (VMP, Biologic Science Instruments).

Stripping/plating for K compatibility (K || QSPE || K)

To investigate the compatibility and stability of the interface between K and solvent-free SPEs, a stripping/plating test was conducted on symmetric K II solvent-free SPE II K cells. These cells were assembled in CR2032 coin-cell configuration and rested at open circuit voltage (OCV) for 6 h. The stripping/plating test was performed (1 h for each process) using a multi-channel potentiostat-galvanostat (VMP, Biologic Science Instruments) at 0.1 mA cm⁻² current density.

EIS for K and PW compatibility (K || solvent-free SPE || K and K || solvent-free SPE || PW, respectively)

EIS carried out the K and PW interface compatibility and stability in three three-electrode cells (El-Cell GmbH) with an AC potential amplitude of 10 mV and a frequency range of 1 MHz to 0.1 Hz.

The K II solvent-free SPE interface was evaluated utilising K metal as the working, counter, and reference electrode. Step1: EIS tests initial interface impedance; step 2: resting at OCV for 6 h; step 3: EIS was conducted to measure the interfacial impedance of the contacted surfaces; step 4: the interfacial impedance was tested by EIS after 1 h stripping and 1 h plating at 100 μ A cm⁻²; step 5: the interfacial impedance was measured again by EIS; and step 6: repeat step 4- 5 till getting 100 cycles of stripping/plating.

The PW II solvent-free SPE interface was evaluated utilising PW as the working electrode, K metal as the counter, and reference electrode. The same testing procedure was followed, except that instead of stripping/plating, the process was modified to include charge-discharge cycles (from 4.4 - 2.7 V vs K⁺/K, at 0.1C). This modification allowed for a more comprehensive assessment of the cyclic performance and stability of the system under investigation. All tests are employed VMP.

Electrochemical properties

K-metal cells (K || solvent-free SPE || PW) were assembled in CR2032 coin-cells comprising 12 mm diameter K metal anodes, 15 mm diameter SPEs, and 12 mm diameter PW cathodes. The K metal was cut, roll pressed, and made into 12 mm diameter discs, following the literature ¹. After 6 h rest, galvanostatic cycling of the cells within a voltage range of 4.4 - 2.7 V vs K⁺/K was performed by using a Maccor 4000 battery tester applying a constant current of 15.5 mA g⁻¹ (1C, PW nominal capacity is 155 mAh g⁻¹). The cells were run at C-rates ranging from 0.1C to 1C. All electrochemical measurements were performed in climatic chambers (Binder GmbH) at 20 °C ± 2 °C, if not stated otherwise. To ensure good contact between the solvent-free SPEs and electrodes, a drop (20 µL) of K salt:IL solution (molar ratio of 1:4) corresponding to the particular solvent-free SPEs was applied at the PW interface.

Chemical composition of SEI

The surface chemistry of the K metal immersed for 28 days in KFSI:Pyr₁₂₀₁FSI and KTFSI:Pyr₁₂₀₁TFSI in a 1:4 molar ratio was investigated by using XPS. The XPS analyses were performed on a SPECS – Phoibos 150 XPS spectrometer and Surface concept micro-channel plate and delay line detector, using Al K α monochromatic X-ray (hv = 1486.7 eV). High-resolution F 1s, K 2p, C 1s, and S 2p photoelectron regions were collected at low energies of 200 W, with 30 eV pass energy and 0.1 eV energy step. The K metal samples were prepared inside the glovebox, cutting a piece of K metal after being immersed for 28 days in the solution and transferred using an air-tight vessel directly to the XPS chamber without any contact with the atmosphere. The depth profiling was done using a focused ion gun for 5 keV Ar⁺ with an ion filter and sputtering rate of 0.8 nm min⁻¹.

Solid state NMR measurements were performed on a Bruker Avance NEO 9.4 T spectrometer (¹H Larmor frequency 400 MHz). The FSI:FSI and TFSI:TFSI were packed into a 2.5 mm rotor in the glove box. They were then transferred into the 2.5 mm triple resonance MAS probe for NMR measurements performed at 20 kHz MAS. ¹H and ¹⁹F spectra were collected using a rotor-synchronized Hahn echo sequence, and ¹³C spectra were acquired with a single pulse excitation followed by ¹H decoupling.

Table S1. The water content of K salts and ILs.

	KFSI	KTFSI	Pyr ₁₂₀₁ FSI	Pyr ₁₂₀₁ TFSI	
Water content (ppm)	17.2	6.4	16.9	8.5	

Figure S1. A. Powder XRD pattern and B. FTIR spectrum of PW.

The structural properties of PW are assessed using powder XRD, as shown in **Figure S1A**. The diffraction pattern reveals a sample where the most intense reflection of cubic PB around 25° 2 theta is split into three, indicating a monoclinic phase with $P2_1/n$ symmetry, consistent with findings from previous literature ².

FTIR spectrum (**Figure S1B**) of the prepared PW displays distinct absorbance peaks at approximately 2060 and 592 cm⁻¹, corresponding to the stretching vibrations of C=N and Fe–C=N, respectively. These characteristic peaks confirm the formation of a Fe–C=N–Mn octahedral structure. Additionally, the peak at 450 cm⁻¹ indicates the presence of the Mn–N bond within the PW structure ².

Figure S2. A. TGA curves of raw K salts and ILs, and **B.** DSC curves of all solvent-free SPEs, **C.** DSC curves of FSI:FSI and PEO₁₀₋₁ (cooling and heating cycles between -100 °C and 100 °C, cooling/heating rate of 5 K min⁻¹), and **D.** pure PEO.

Figure S3. A. The Nyquist plot and the corresponding fitted curve of FSI:FSI at 10 °C. Inset: The used equivalent circuit model. B. Temperature-dependent ionic conductivity of FSI:FSI and PEO10-1, with illustrations of the two samples.

SPEs	Application topic	ILs added or not	Tg/°C	Ionic conductivity /mS cm ⁻¹	Ref.
FSI: FSI	KIBs	YES	-94.0 -94.6	1.6 (20 °C) 6.0 (60 °C)	This work
P(EO/MEEGEª/AGE ^b)- KFSA	KIBs	NO	/	0.02 (25 °C)	1
PEO + KBrO ₃ (70:30)	KIBs	NO	/	$7.7 \times 10^{-5} (25 \text{ °C})$	5
PEO + KBPh ₄ (15:1)	KIBs	NO	ca25	0.11 (60 °C)	6
Polymer-gel electrolyte	KIBs	Contain organic- liquid electrolyte	/	4.3 (RT°)	7
PPCB ^d -SPE + KFSI	KIBs	NO	/	0.01 (20 °C)	8
BPE ^e 15-NaTFSI1	NIBs	NO	-45.4	ca. 0.04 (25 °C)	3
FSI : FSI	NIBs	YES	-87	1.2 (20 °C)	(our previous work) ⁹
PEO LiTFSI Pyr ₁₄ FSI	LIBs	YES	-79.8	ca. 0.3 (20°C)	10
PIL ^f - Pyr ₁₄ TFSI- LiTFSI	LIBs	YES	ca67	0.16 (20 °C) 0.48 (60 °C)	11

Table S2. Ionic conductivity comparison of different SPEs reported up to date.

^a MEEG: 2-(2-methoxyethoxy)ethyl glycidyl ether;

^b AGE: allyl glycidyl ether

^c RT: room temperature

^d PPCB: poly (propylene carbonate) (PPC)-KFSI with cellulose nonwoven backbone

^e BPE: block copolymer-based electrolyte

^f PIL: pyrrolidinium-based polymeric ionic liquid

Figure S4. The stripping/plating cycles of K || FSI:FSI || K cell and the zooming curves of the last 20 cycles of the selected area (highlighted in red).

Figure S5. Capacity vs. cycle number of the K cell using PW as working and K as counter electrode between 4.4 - 2.7 V vs K⁺/K at 20 °C ± 2 °C). **A**. The discharge capacity of the K cells with solvent-free SPE at 0.1C and **B**. the corresponding CE.

Figure S6. The Nyquist plots after the first GCD of **A.** FSI:FSI and **B.** TFSI:TFSI containing K cells. The galvanostatic 10 cycles of **C.** FSI:FSI, **D.** TFSI:TFSI-based cells. Inset: the last GCD of TFSI:TFSI. The charging and discharging steps were set to 50 h (even if the cell was run for more than 50 h, it did not achieve the upper cut-off voltage of 4.4V vs K^+/K).

Reference

- 1 M. Hamada, R. Tatara, K. Kubota, S. Kumakura and S. Komaba, *ACS Energy Lett.*, 2022, 7, 2244–2246.
- L. Deng, J. Qu, X. Niu, J. Liu, J. Zhang, Y. Hong, M. Feng, J. Wang, M. Hu, L. Zeng, Q. Zhang, L. Guo and Y. Zhu, *Nat. Commun.*, 2021, 12, 1–9.
- A. D. Khudyshkina, A. J. Butzelaar, Y. Guo, M. Hoffmann, T. Bergfeldt, M. Schaller, S. Indris,
 M. Wilhelm, P. Théato and F. Jeschull, *Electrochim. Acta*, 2023, 454, 142421.
- 4 X. Dong, A. Mayer, Z. Chen, S. Passerini and D. Bresser, ACS Energy Lett., 2024, 5279–5287.
- 5 T. Sreekanth, M. Jaipal Reddy and U. V. Subba Rao, J. Power Sources, 2001, 93, 268–272.
- 6 M. Elmanzalawy, E. Sanchez-Ahijón, O. Kisacik, J. Carretero-González and E. Castillo-Martínez, ACS Appl. Energy Mater., 2022, 5, 9009–9019.
- 7 H. Gao, L. Xue, S. Xin and J. B. Goodenough, *Angew. Chemie Int. Ed.*, 2018, **57**, 5449–5453.
- 8 H. Fei, Y. Liu, Y. An, X. Xu, G. Zeng, Y. Tian, L. Ci, B. Xi, S. Xiong and J. Feng, *J. Power Sources*, 2018, **399**, 294–298.
- 9 D. Roscher, Y. Kim, D. Stepien, M. Zarrabeitia and S. Passerini, *Batter. Supercaps*, , DOI:10.1002/batt.202300092.
- 10 H. De Vries, S. Jeong and S. Passerini, *RSC Adv.*, 2015, **5**, 13598–13606.
- G. B. Appetecchi, G. T. Kim, M. Montanino, M. Carewska, R. Marcilla, D. Mecerreyes and I. De Meatza, *J. Power Sources*, 2010, **195**, 3668–3675.