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Computational Details

All the DFT calculations in our work were performed by the Vienna ab initio
simulation package (VASP) [1l. The generalized gradient approximation (GGA) with
the Perdew-Burke-Ernzerhof (PBE) functional were used to describe the electronic
exchange and correlation effects [>4. Uniform G-centered k-points meshes with a
resolution of 21*0.04 A-! and Methfessel-Paxton electronic smearing were adopted for
the integration in the Brillouin zone for geometric optimization. The simulation was
run with a cutoff energy of 500 eV throughout the computations. The geometry
optimization was considered convergent when the electronic energy and Hellmann-
Feynman forces convergence criterion was smaller than 105 eV and 0.05 eV A-l,
respectively. Van der Waals dispersion corrections were treated by the Grimme DFT-
D3 method [>-¢l. We carried out the potential energy diffusion pathway and minimum
diffusion energy barrier of Na on all related graphene systems with the climbing image
nudged elastic band (CI-NEB) method, [7) which was implemented in VASP. The
method involves optimizing a chain of images which is connecting the initial and final

states, and each image of the reaction path can move only in the perpendicular direction.
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Supplementary Figures

Fig. S1 SEM images of CKF.

Fig. S2 SEM image of DAP-OKF.

Fig. S3 SEM images of OKF.



Fig. S4 Photographs of CKF, OKF and DAP-OKF.
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Fig. S5 N, adsorption/desorption isotherms of DAP-OKF, OKF and CKF.

Fig. S6 SEM images of PKF.
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Fig. S7 (a) N, adsorption-desorption isothermal curves and (b) pore size distributions

of PKF.
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Fig. S8 DTG curves of DAP-OKF, OKF and CKF.
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Fig. S9 (a) XPS spectra of DAP-OKF, OKF and CKF. (b) High-resolution P 2p

spectrum of DAP-OKF.



C1s — DAP-HC
| —OHC
| —DHC

0O 1s

. P 2p M WHL
5
5
2
®
5 A
i)
£

0 300 600 900

Binding energy (eV)
Fig. S10 XPS spectra of DAP-HC, OHC and DHC.

Fig. S11 SEM image of DAP-HC and its EDS element mappings of C, O, N and P.
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Fig. S12 High-resolution P 2p spectrum (C-P-C) of DAP-HC.
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Fig. S13 (a) N, adsorption-desorption isothermal curves and (b) pore size distributions

of PHC.
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Fig. S14 Fitted SAXS patterns of DAP-HC (a), OHC (b) and DHC (c).
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Fig. S15 (a) Initial GCD curves at 0.1 C of PHC. (b) Rate performance at various

current rates.
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Fig. S16 GCD curves of DAP-HC (a), OHC (b) and DHC (c) anodes at 0.1 C, 0.2 C,

05C,1C,2C,5C,10Cand 20 C.
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Fig. S17 Plateau (a) and slope (b) capacities of DAP-HC, OHC and DHC at different

current densities.

3.0 ——DAP-HC

=y
4]
1

-
o
I

Potential (V vs. Na*/Na)
o
P

e
o
|

T T

0 10 20 30 40 50
Time (day)

Fig. S18 Self-discharging curves of the open-circuit voltage changes over time for

DAP-HC.
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Fig. S19 CV curves of OHC (a) and DHC (b) anodes at 0.2 mV s,
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Fig. S20 Kinetic analyses of OHC and DHC anodes for sodium-ion batteries. (a) CV

curves of OHC at various scan rates and the corresponding correlations between peak

current (i) and scan rate (v) at peak A and peak B (b). (c) Capacitive contribution

percentage of OHC at various scan rates. (d) CV curves of DHC at various scan rates

and the corresponding correlations between peak current (i) and scan rate (v) at peak A

and peak B (e). (f) Capacitive contribution percentage of DHC at various scan rates.
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Fig. S21 CV curves of OHC (a) and DHC (b) anodes with a calculated capacitive

contribution at 2 mV sl
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Fig. S22 In-situ Raman spectra of DAP-HC as SIB anodes.
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Fig. S23 Optical photographs of electrodes at different discharge stages soaked in an

ethanol solution containing phenolphthalein.
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Fig. S24 Optimized configurations of Na adsorbed on different carbon sheets: (a)
pristine graphitic layer, (b) N/P co-doped graphitic layer, (c) the closed pore structural
model formed by N/P co-doped graphitic layer. (d) Comparison of calculated

adsorption energy for Na*. C: black, N: blue, O: red, H: white, P: purple.
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Fig. S25 DFT models for Na* diffusion pathways of (a) pristine graphitic layer, (b) N/P

co-doped graphitic layer, (c) the closed pore structural model formed by N/P co-doped



graphitic layer. (d) Potential barrier energy for Na* at different models. C: black, N:

blue, O: red, H: white, P: purple.

Supplementary Tables

Table S1 Structural parameters estimated from N, adsorption-desorption results.

N adsorption

Samples
Sger (m? g) Vpore (cm? g1)
DAP-OKF 45.79 0.3485
OKF 10.98 0.0506
CKF 9.59 0.0109

Table S2 Elemental analysis and XPS analysis-C 1s of DAP-OKF, OKF and CKF.

Elemental analysis (at.%) XPS analysis-C 1s (at.%)

Samples C o N P sp>-C sp>-C  C-O/C-N C=0 0-C=0
%‘;}; 79.36  13.80 6.41 0.43 21.17  47.15 16.46 9.89 5.33
OKF 72.07 26.55 1.38 17.86  51.20 18.28 7.74 4.92
CKF 85.65 12.06 2.29 15.51 62.36 12.65 6.00 3.48

Table S3 Fitted values from the Porod plot of SAXS data.

A B a a R (nm)
DAP-HC 5.62E7 3.58E+ 4.17 5.94 1.88
OHC 1.56E7 3.52E4 436 3.27 1.03

DHC 7.79E3 3.33E4 4.35 3.65 1.15




