Electronic supplementary information for

Tri-Coordinated PdNP Architecture for Simultaneous Capture, Activation, and Catalytic Conversion of Dilute CO₂ via Multisite Synergy

Qinggang Zhang,^{+a} Jing Li,^{+ab} Jie Chen,^{+a} Yiwang Chen^{*abc} and Zhonggao Zhou^{*a}

* Corresponding authors

^a College of Chemistry and Materials Science/Analysis and Testing Center/Key Laboratory of Jiangxi University for Functional Materials Chemistry/Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, PR China E-mail: <u>ywchen@ncu.edu.cn</u>, <u>zhouzhonggao@gnnu.edu.cn</u> (<u>zhgzhou@foxmail.com</u>)

^b College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, PR China

^c College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry,Nanchang University, Nanchang 330031, PR China

⁺Q.Z., J.L. and J.C. contributed equally to this work

1. Experimental Section

1.1 General

All starting materials, reagents and solvents were supplied commercially from Sigma Aldrich, Alfa Aesar, and/or Sinopharm Chemical Reagent Limited Corporation. All nuclear magnetic resonance spectroscopy (NMR) were tested with Bruker Avance III 400 NMR spectrometer. Fourier-transform infrared spectroscopy (FT-IR) were tested on an Avatar Nicholet FT-IR spectrometer in neat with the smart OMNI-transmission accessories or KBr pellets by standard method, and frequencies were reported as cm⁻¹. High performance liquid chromatography coupled with high resolution mass spectrometry (HPLC-HR-MS) were obtained using a Waters G2-XS QTOF mass spectrometer, with samples dissolved in methanol. X-ray diffraction (XRD) pattern were recorded with Bruker D8 advanced X-ray diffraction measurement system, with Cu K α source (λ =1.54 Å). Transmission electron microscope (TEM) observations were conducted by JEM-2000EX at an acceleration voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were conducted on an ESCALAB 250Xi X-ray photoelectron spectrometer (Thermo Fisher) using an Al Ka source (15 kV, 10 mA) with Ar etching for 30 min (the charge of C-C carbon species here was corrected to 284.8 eV). Solution-state ultraviolet-visible (UV-Vis) spectra were measured on JASCO V-770 spectrometer with a 1 cm quartz cell at room temperature (RT. around 25 °C). Inductively coupled plasma-optical emission spectroscopy (ICP-OES) Shimadzu ICPS-8100. analyses were conducted by The AcGlu-MeIm-PdNPs 1c-4c were further characterized bv ICP-OES. thermogravimetric analysis (TGA) and high-resolution TEM (HR-TEM). The gas proportioner was model KT-C3ZS, produced by Zhengzhou Ketan Instrument Equipment Co., Ltd was used to delivers a continuous and stable source of CO_2 (flow rate is set at 40 sccm).

1.2 Synthesis of *N*-substituted imidazoles

1.2.1 Synthesis of 1-butyl-2-methyl-1H-imidazole

Sodium hydride (60% in oil, 0.92 g, 23.0 mmol) was added to a redistilled tetrahydrofuran solution of 2-methylimidazole (1.64 g, 17.0 mmol) in a 250 mL round-bottom flask. The mixture was stirred at 0 °C for 2.0 h, after which 1-bromobutane (3.7 mL, 34.0 mmol) and tetraoctylammonium bromide (0.02 g, catalytic) were sequentially added. Stirring was continued at room temperature for an additional 4.0 h, yielding a yellow suspension. Volatiles were removed by rotary evaporation to afford a yellow solid. Dichloromethane was added, and the mixture was filtered through a sand core funnel under suction to yield a colorless filtrate. After solvent removal by rotary evaporation, the product was purified by column chromatography on silica (mesh 200–300 µm) using dichloromethane/methanol (20:1) as the mobile phase. This yielded 1-butyl-2-methyl-1H-imidazole (2.04 g, 87%) as a pale yellow viscous liquid. Other N-substituted imidazoles were prepared using an analogous procedure. ¹H NMR (400 MHz, CDCl₃) δ 6.84 (s, 1H), 6.76 (d, J = 1.1 Hz, 1H), 3.77 (td, J = 7.3, 1.9 Hz, 2H), 2.32 (d, J = 2.1 Hz, 3H), 1.74 – 1.56 (m, 2H), 1.40 -1.17 (m, 3H), 0.90 (td, J = 7.3, 1.9 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 126.8, 119.0, 77.5, 77.2, 76.8, 45.8, 32.7, 19.7, 13.6, 12.9 ppm.

1.2.2 Synthesis of 2-methyl-1-((perfluorophenyl)methyl)-1H-imidazole

Sodium hydride (60% in oil, 0.88 g, 12.0 mmol) was added to a redistilling tetrahydrofuran solution of 2-methylimidazole (0.82 g, 10.0 mmol) in a 250 mL round-bottom flask, and the resulting suspension was stirred at the ice-bath for around 2.0 h. 1-(bromomethyl)-2,3,4,5,6-pentafluorobenzene (2.61 g, 10 mmol) and tetraoctyl ammonium bromide (0.01 g) for catalytic quantities was then added in the flask and the mixture was stirred at RT for another 4.0 h. The volatiles were removed by rotary evaporation to get a black solid. Dichloromethane was added and the mixture was filtered by suction through a sand core funnel. The filtrate was collected and solvent was removed by rotary evaporation. Purification by column chromatography on silica (mesh 200-300 μ m) with dichloromethane/methanol (20:1)

gave the product (1.91 g, 73%) as a pale yellow viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 6.73 (d, J = 1.0 Hz, 1H), 6.68 (d, J = 1.4 Hz, 1H), 5.00 (s, 2H), 2.30 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 146.4, 146.3, 146.2, 144.6, 144.0, 143.9, 143.9, 142.7, 140.2, 138.9, 138.8, 138.7, 136.4, 136.3, 136.1, 110.0, 109.9, 109.8, 109.7, 36.8, 12.4 ppm.

1.3 General procedure for the synthesis of AcGlu-MeIm-Br (1a-4a)

Compound 1,2-dimethyl-1H-imidazole (0.48 g, 5.0 mmol) and 2-(2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyloxy)-ethyl bromide (2.39 g, 5.25 mmol) were dissolved in dry acetonitrile and heated at 120 °C in a sealed high-pressure reactor for 48 h.¹ After cooling, the solvent was decanted, then the volatiles were removed by rotary evaporation. Purification by column chromatography on silica (mesh 200-300 µm) with dichloromethane/methanol (20:1) gave the product **1a** (2.62 g, 95%) as a pale yellow viscous liquid. AcGlu-MeIm-Br **2a**–**4a** was prepared in a similar method.

1a, a pale yellow viscous liquid, 95%. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 1.9 Hz, 1H), 7.55 (d, J = 1.9 Hz, 1H), 5.13 (dd, J = 11.0, 8.0 Hz, 1H), 4.98 (t, J = 9.7 Hz, 1H), 4.83 (dd, J = 9.5, 8.1 Hz, 1H), 4.68 (dd, J = 15.0, 3.0 Hz, 1H), 4.52 (d, J = 8.0 Hz, 2H), 4.22 (dd, J = 12.4, 4.8 Hz, 2H), 4.14 – 4.00 (m, 2H), 3.91 (s, 3H), 3.72 (ddd, J = 10.1, 4.7, 2.0 Hz, 1H), 2.70 (s, 3H), 2.07 (s, 3H), 2.01 – 1.88 (m, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 169.8, 169.4, 169.3, 145.0, 122.5, 121.4, 100.0, 72.3, 71.3, 70.9, 68.1, 68.0, 61.5, 53.7, 48.3, 35.8, 20.7, 20.7, 20.4, 20.4, 10.6 ppm. HR-MS m/z: [M-Br]⁺ calcd for C₂₁H₃₁N₂O₁₀ 471.19732; found 471.19785.

2a, a pale yellow solid, 90%. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 2.1 Hz, 1H), 7.43 (d, J = 2.1 Hz, 1H), 5.09 (t, J = 9.5 Hz, 1H), 4.92 (t, J = 9.7 Hz, 1H), 4.78 (dd, J = 9.7, 8.0 Hz, 1H), 4.66 (ddd, J = 14.6, 5.3, 2.9 Hz, 1H), 4.55 (dd, J = 7.8, 3.1 Hz, 1H), 4.51 (d, J = 8.0 Hz, 1H), 4.19 (ddd, J = 12.3, 7.0, 4.1 Hz, 2H), 4.14 – 4.04 (m, 3H), 4.01 (dd, J = 12.4, 2.2 Hz, 1H), 3.70 (ddd, J = 10.1, 4.9, 2.2 Hz, 1H), 2.67 (s, 3H), 2.02 (s, 3H), 1.94 (s, 3H), 1.89 (d, J = 6.6 Hz, 6H), 1.76 (dt, J = 20.9, 7.5 Hz, 2H), 1.43 – 1.27 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃)

δ 170.6, 169.9, 169.6, 169.5, 144.4, 122.7, 121.9, 100.3, 72.6, 71.9, 71.1, 68.2, 67.8, 61.7, 53.5, 49.5, 49.4, 31.5, 21.0, 20.6, 20.5, 19.8, 13.6, 11.6 ppm. HR-MS m/z: [M-Br]⁺ calcd for C₂₄H₃₇N₂O₁₀, 513.24427; found, 513.24497.

3a, a pale yellow viscous liquid, 97%. ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.88 (m, 1H), 7.38 (td, J = 7.6, 3.3 Hz, 4H), 7.30 – 7.26 (m, 2H), 5.40 (q, J = 15.2 Hz, 2H), 5.14 (td, J = 9.5, 1.5 Hz, 1H), 4.97 (dd, J = 14.2, 5.2 Hz, 1H), 4.85 – 4.75 (m, 1H), 4.66 (d, J = 12.3 Hz, 1H), 4.55 (d, J = 8.0 Hz, 2H), 4.30 – 3.99 (m, 4H), 3.73 (ddd, J = 10.1, 4.9, 2.2 Hz, 1H), 2.71 (d, J = 2.6 Hz, 3H), 2.05 (d, J = 2.1 Hz, 3H), 2.01 – 1.89 (m, 9) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 169.9, 169.6, 145.0, 129.6, 129.4, 128.1, 122.5, 121.3, 100.3, 72.4, 71.9, 71.1, 68.2, 68.1, 61.7, 52.4, 48.7, 20.8, 20.8, 20.6, 20.5, 11.1 ppm. HR-MS m/z: [M-Br]⁺ calcd for C₂₇H₃₅N₂O₁₀, 547.22862; found, 547.22890.

4a, a pale yellow viscous liquid, 93%. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 2.1 Hz, 1H), 7.47 (d, J = 1.5 Hz, 1H), 5.70 – 5.53 (m, 2H), 5.09 (t, J = 9.5 Hz, 1H), 4.91 (t, J = 9.7 Hz, 1H), 4.72 (dd, J = 9.6, 8.0 Hz, 1H), 4.60 (ddd, J = 14.4, 5.0, 3.0 Hz, 1H), 4.56 – 4.46 (m, 2H), 4.15 (dd, J = 12.4, 4.8 Hz, 2H), 4.09 – 3.94 (m, 2H), 3.71 (ddd, J = 10.0, 4.7, 2.2 Hz, 1H), 2.76 (s, 3H), 2.01 (s, 3H), 1.94 (s, 3H), 1.91 (s, 3H), 1.87 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 169.9, 169.5, 169.5, 145.7, 122.7, 121.5, 100.2, 72.3, 71.8, 71.1, 68.1, 67.8, 61.6, 49.0, 40.3, 20.8, 20.7, 20.5, 20.5, 10.9 ppm. HR-MS m/z: [M-Br]⁺ calcd for C₂₇H₃₀N₂O₁₀F₅, 637.18151; found, 637.18200.

1.4 General procedure for the synthesis of AcGlu-MeIm-Pd (1b-4b)

AcGlu-based 2-methylimidazolium halopalladate salt **1b** was prepared as follows: in a 100.0 mL round-bottom flask, **1a** (0.17 g, 0.3 mmol) were dissolved in 50.0 mL of DCM, and aqueous solution of Na₂PdCl₄ (1.0 g \cdot 100.0 mL⁻¹, 7.6 mL) was added in the flask and the mixture was stirred at RT overnight.² The two-phase mixture was vigorously stirred until all the Na₂PdCl₄ was transferred into the organic layer, followed by a phase-separation to yield the organic layer. The organic layer was washed twice with ultrapure water, then removed by rotary evaporation and dried

under vacuum to get the product **1b** (0.17 g, 96%) as a reddish brown solid. AcGlu-MeIm-Pd **2b–4b** was prepared in similar processes.

1b, a reddish brown solid, 96%. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 2.1 Hz, 1H), 7.57 (d, J = 2.0 Hz, 1H), 5.19 (t, J = 9.5 Hz, 1H), 5.03 (t, J = 9.7 Hz, 1H), 4.92 (dd, J = 9.6, 8.0 Hz, 1H), 4.81 – 4.64 (m, 3H), 4.37 (dt, J = 8.7, 4.2 Hz, 1H), 4.27 (dd, J = 12.5, 4.6 Hz, 1H), 4.22 – 4.10 (m, 2H), 4.06 (s, 3H), 3.80 (ddd, J = 10.0, 4.5, 2.2 Hz, 1H), 2.93 (s, 3H), 2.10 (s, 3H), 2.02 – 1.96 (m, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 169.8, 169.4, 169.4, 145.1, 123.1, 122.1, 100.1, 72.4, 71.6, 71.0, 68.0, 67.8, 61.6, 49.1, 36.4, 20.9, 20.8, 20.5, 20.4, 11.4 ppm. FT-IR (cm⁻¹): 3436, 3139, 2961, 2360, 1747, 1589, 1537, 1513, 1429, 1369, 1223, 1169, 1120, 1037, 957, 800, 748, 697. HR-MS m/z: [M-PdCl4]⁺ calcd for C₂₁H₃₁N₂O₁₀, 471.1979; found, 471.1980.

2b, a reddish brown solid, 98%. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, J = 2.0 Hz, 1H), 7.52 (d, J = 2.0 Hz, 1H), 5.16 (d, J = 9.5 Hz, 1H), 5.00 (t, J = 9.7 Hz, 1H), 4.89 (dd, J = 9.5, 8.1 Hz, 1H), 4.73 (dd, J = 18.8, 5.8 Hz, 3H), 4.39 (s, 1H), 4.34 – 4.28 (m, 2H), 4.28 – 4.22 (m, 2H), 4.12 (dd, J = 12.4, 1.9 Hz, 1H), 3.81 (dd, J = 10.1, 2.3 Hz, 1H), 2.91 (s, 3H), 2.07 (s, 3H), 2.00 – 1.94 (m, 9H), 1.93 – 1.87 (m, 2H), 1.45 (dq, J = 14.7, 7.3 Hz, 2H), 1.45 (dq, J = 14.7, 7.3 Hz, 2H), 0.99 (t, J = 7.3 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 169.9, 169.5, 144.4, 122.7, 121.9, 100.3, 72.5, 71.9, 71.1, 68.1, 67.6, 61.7, 49.6, 49.4, 31.5, 20.9, 20.5, 20.5, 19.8, 13.6, 11.5 ppm. FT-IR (cm⁻¹): 3597, 3513, 3177, 3134, 2960, 2936, 2874, 1753, 1626, 1585, 1530, 1433, 1375, 1227, 1169, 1126, 1037, 908, 749, 698. HR-MS m/z: [M-PdCl₄]⁺ calcd for C₂₄H₃₇N₂O₁₀, 513.2448; found, 513.2446.

3b, a reddish brown solid, 94%. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.51 – 7.32 (m, 6H), 5.59 (s, 2H), 5.20 (t, J = 9.5 Hz, 1H), 5.02 (t, J = 9.7 Hz, 1H), 4.91 (dd, J = 11.8, 5.8 Hz, 1H), 4.80 (s, 2H), 4.70 (d, J = 8.0 Hz, 1H), 4.41 (d, J = 10.7 Hz, 1H), 4.32 – 4.19 (m, 2H), 4.14 (d, J = 12.4 Hz, 1H), 3.84 – 3.73 (m, 1H), 2.99 (s, 3H), 2.07 (s, 3H), 1.98 (dd, J = 13.0, 5.8 Hz, 9H) ppm;¹³C NMR (101 MHz, CDCl₃) δ 170.5, 170.1, 169.4, 169.3, 144.8, 126.9, 119.4, 100.5, 72.5, 71.9, 70.7, 68.7, 68.2, 61.7, 45.5,

20.7, 20.5, 12.83 ppm. HR-MS m/z: $[M-PdCl_4]^+$ calcd for $C_{27}H_{35}N_2O_{10}$, 547.22862; found, 547.22926.

4b, a reddish brown solid, 98%.¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 2.0 Hz, 1H), 7.65 (s, 1H), 5.71 (s, 2H), 5.19 (t, J = 9.5 Hz, 1H), 5.01 (t, J = 9.7 Hz, 1H), 4.88 – 4.81 (m, 1H), 4.76 (s, 2H), 4.70 (d, J = 8.0 Hz, 1H), 4.39 (dd, J = 11.2, 4.2 Hz, 1H), 4.20 (ddd, J = 36.4, 12.3, 3.2 Hz, 3H), 3.81 (ddd, J = 10.0, 4.2, 2.2 Hz, 1H), 3.00 (s, 3H), 2.09 (s, 3H), 2.03 – 1.96 (m, 9H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 170.0, 169.5, 169.5, 145.7, 123.2, 122.6, 100.3, 72.4, 71.9, 71.1, 68.2, 67.4, 61.6, 49.8, 40.8, 20.9, 20.8, 20.6, 20.5, 11.4 ppm. HR-MS m/z: [M-PdCl₄]⁺ calcd for C₂₇H₃₀N₂O₁₀F₅, 637.18151; found, 637.18163.

1.5 General procedure for the synthesis of AcGlu-MeIm-PdNPs 1c-4c

AcGlu-MeIm-PdNP 1c was prepared as follows: in a 100.0 mL round-bottom flask, 1b (0.18 mg, 0.3 mmol) were dissolved in 50.0 mL of dichloromethane, and freshly prepared ice aqueous solution of NaBH₄ (3.0 mmol) was slowly added in the flask and the mixture was stirred at an ice-salt bath for 1-2 h.³ The solution was washed twice with ultrapure water, then removed by rotary evaporation and dried under vacuum to obtained the product 1c (0.15 g, 95%) as a black solid. AcGlu-MeIm-PdNPs 2c–4c was prepared in similar processes.

1c, a black solid, 96%. ¹H NMR (400 MHz, DMSO) δ 7.84 (s, 1H), 7.68 (s, 1H), 5.48 (s, 2H), 5.23 (s, 1H), 4.86 (s, 2H), 4.71 (s, 1H), 4.38 (s, 2H), 4.05 (d, J = 45.6 Hz, 5H), 2.61 (s, 3H), 1.97 (s, 9H) ppm, ¹³C NMR (101 MHz, DMSO) δ 170.4, 169.9, 169.7, 169.5, 145.4, 134.9, 129.4, 128.9, 128.1, 122.3, 122.0, 99.4, 72.3, 71.1, 68.5, 67.4, 62.1, 51.1, 48.1, 20.9, 20.8, 20.6, 10.2 ppm. FT-IR (cm⁻¹): 3460, 2959, 2926, 2854, 1752, 1626, 1572, 1515, 1429, 1369, 1255, 1226, 1166, 1035, 903, 803, 698, 601, 529. HR-MS m/z: [M-Pd]⁺ calcd for C₂₁H₃₁N₂O₁₀, 471.19732; found, 471.19767.

2c, a black solid, 99%. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.37 (s, 1H), 5.09 (s, 1H), 4.95 (s, 3H), 4.80 (s, 2H), 4.60 (s, 1H), 4.23 (s, 1H), 4.20 (s, 2H), 4.10 (s, 2H), 3.76 (s, 1H), 2.70 (s, 3H), 2.36 (s, 3H), 2.04 (s, 3H), 1.94 (s, 9H), 1.81 – 1.78 (m, 2H), 1.38 – 1.35 (m, 2H), 0.93 (s, 3H) ppm, ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 169.8,

169.5, 169.5, 144.2, 100.2, 72.5, 71.6, 71.4, 71.0, 68.1, 61.7, 31.6, 29.5, 20.8, 20.7, 20.4, 19.6, 13.4, 10.2 ppm .FT-IR (cm⁻¹): 3450, 2961, 2928, 2872, 1752, 1637, 1511, 1431, 1369, 1257, 1257, 1226, 1167, 1038, 909, 803, 700, 596. HR-MS m/z: [M-Pd]⁺ calcd for C₂₄H₃₇N₂O₁₀, 513.24427; found, 513.24436.

3c, a black solid, 98%. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.43 (d, *J* = 6.9 Hz, 3H), 7.31 (d, *J* = 5.8 Hz, 3H), 5.49 – 5.30 (m, 2H), 5.18 (t, *J* = 9.6 Hz, 1H), 4.99 (t, *J* = 9.7 Hz, 1H), 4.85 (t, *J* = 8.8 Hz, 1H), 4.71 (s, 1H), 4.58 (t, *J* = 12.7 Hz, 2H), 4.34 – 4.13 (m, 3H), 4.09 (d, *J* = 12.4 Hz, 1H), 3.75 (dd, *J* = 10.9, 4.8 Hz, 1H), 2.75 (s, 3H), 2.08 (s, 3H), 2.03 (s, 3H), 1.99 (s, 9H) ppm, ¹³C NMR (101 MHz, DMSO) δ 170.5, 170.0, 169.8, 169.5, 145.5, 135.0, 129.5, 129.0, 128.2, 122.4, 122.1, 99.5, 72.4, 71.2, 68.6, 67.5, 62.1, 51.1, 48.2, 21.0, 20.8, 20.7, 10.2 ppm, FT-IR (cm⁻¹): 3450, 2961, 2928, 2872, 1752, 1637, 1511, 1432, 1369, 1257, 1225, 1167, 1038, 909, 803, 701, 596. HR-MS m/z: [M-Pd]⁺ calcd for C₂₇H₃₅N₂O₁₀, 547.22862; found, 547.22926.

4c, a black solid, 99%. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.61 – 7.36 (m, 1H), 5.62 (s, 2H), 5.22 – 5.16 (m, 1H), 5.05 – 4.98 (m, 1H), 4.77 (s, 1H), 4.58 (d, *J* = 47.6 Hz, 3H), 4.17 (d, *J* = 52.8 Hz, 4H), 3.80 (s, 1H), 2.08 (d, *J* = 7.8 Hz, 3H), 1.99 (d, *J* = 14.2 Hz, 9H), 1.25 (s, 3H) ppm, ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 169.9, 169.5, 123.6, 100.5, 72.5, 72.0, 71.2, 68.2, 61.9, 29.7, 21.0, 20.6 ppm. FT-IR (cm⁻¹): 3449, 2961, 2923, 2852, 1753, 1657, 1524, 1509, 1429, 1369, 1225, 1170, 1037, 964, 910, 799, 684, 596. HR-MS m/z: [M-Pd]⁺ calcd for C₂₇H₃₀N₂O₁₀F₅, 637.18151; found, 547.22853.

Fig. S1. Synthetic route and chemical structures of PdNPs 1c-4c.

1.6 Structural analysis of selected AcGlu-MeIm salts and PdNPs.

Fig. S2. ¹H NMR spectra of AcGlu-MeIm salts and PdNPs (1a-1c).

Fig. S3. ¹³C NMR spectra of AcGlu-MeIm salts and PdNPs (1a–1c).

Fig. S4. ¹H NMR spectra of PdNPs **1c–4c**.

Fig. S5. FT-IR spectra of AcGlu-MeIm-Br 1a-4a.

Fig. S6. FT-IR spectra of AcGlu-MeIm-Pd 1b-4b.

Fig. S7. FT-IR spectra of AcGlu-MeIm-PdNPs 1c-4c.

Entry	Predicted $[M]^+$ of L (m/z)	Measured $[M]^+$ of L (m/z)	Molecular formula of L [M]
1a	471.19732	471.19785	$C_{21}H_{31}N_2O_{10}$
1b	471.19732	471.19765	$C_{21}H_{31}N_2O_{10}$
1c	471.19732	471.19767	$C_{21}H_{31}N_2O_{10}$
2a	513.24427	513.24497	$C_{24}H_{37}N_2O_{10}$
2b	513.24427	513.24452	$C_{24}H_{37}N_2O_{10}$
2c	513.24427	513.24436	$C_{24}H_{37}N_2O_{10}$
3 a	547.22862	547.22890	$C_{27}H_{35}N_2O_{10}$
3b	547.22862	547.22926	$C_{27}H_{35}N_2O_{10}$
3c	547.22862	547.22853	$C_{27}H_{35}N_2O_{10}$
4 a	637.18151	637.18200	$C_{27}H_{30}N_2O_{10}F_5$
4b	637.18151	637.18163	$C_{27}H_{30}N_2O_{10}F_5$
4c	637.18151	637.18173	$C_{27}H_{30}N_2O_{10}F_5$

Table S1. HR-MS analysis results of AcGlu-MeIm salts and PdNPs.

Fig. S8. CO₂ adsorption desorption curve of PdNP **3c**. (a) Isotherm linear plot. (b) Isotherm linear absolute plot. (c) Isotherm pressure composition.

Fig. S9. TGA curve and first-order derivative curve of PdNPs 1c-4c.

Entry	PdNPs	Pd content (%)	metal-to-ligand ratio
1	1c	22.95	1.35:1
2	2c	18.60	1.11:1
3	3c	18.14	1.14:1
4	4c	18.82	1.39:1

Table S2. ICP analytical data for the PdNPs 1c-4c.

Fig. S10. HR-TEM images of PdNPs 1c (a), 2c (b), and 4c (c). Scale bar: 20 nm.

Fig. S11. HR-TEM images of PdNPs 1c (a), 2c (b), and 4c (c). Scale bar: 5 nm

Fig. S12. SAED of PdNPs 1c (a), 2c (b), and 4c (c). Scale bar: 5.00 nm⁻¹.

Fig. S13. Size distribution histograms of PdNPs 1c (a), 2c (b), and 4c (c)

Fig. S14. XRD of PdNPs 1c–4c.

Fig. S15. XRD of **3a–3c**.

Fig. S16. XPS spectra of PdNPs 1c-4c. a XPS spectra of C 1s. b XPS spectra of N 1s.c XPS spectra of O 1s. d XPS spectra of Pd 3d.

2. Catalytic evaluation

2.1 General procedures for the AcGlu-MeIm-PdNP-catalyzed 4C-TCRs of CO₂, propargylic amines, and aryl iodides.⁴

The Pd-catalyzed 4C-TCR was conducted as follows: the appropriate amounts of AcGlu-MeIm-PdNP catalyst, propargylic amine, aryl iodide, and base were added to the solvent, then the reaction solution was stirred under RT-80°C for suitable time. After completion of the reaction, the substrate conversions and product yields were determined via ¹H NMR analysis. The reactions were monitored by ¹H NMR, and the yields were calculated against 1,2,4,5-tetramethylbenzene.

Fig. S17. a AcGlu-MeIm-PdNPs-catalyzed 4C-TCR of CO₂, propargylic amine, and aryl iodide. b The gas proportioner, model KT-C3ZS, produced by Zhengzhou Ketan Instrument Equipment Co., Ltd..

2.1.1 Initial optimization of AcGlu-MeIm-PdNP 4c-catalyzed reaction of CO₂,

propargylic amine, and aryl iodide.

Entry	Base	Solvent	Yield (%) ^{b}
1	NaOH	DMSO	68
2	NaOAc	DMSO	57
3	K ₂ CO ₃	DMSO	80
4	Na ₃ PO ₄ ·12H ₂ O	DMSO	79
5	Na ₂ CO ₃	DMSO	66
6	NaHCO ₃	DMSO	70
7	NaO'Bu	DMSO	87
8	Et ₃ N	DMSO	2
9	Base-free	DMSO	0
10	NaO'Bu	MeOH	1
11	NaO ^t Bu	Toluene	0
12	NaO ^t Bu	MeCN	0
13	NaO ^t Bu	THF	0
14	NaO ^t Bu	EtOH	3
15	NaO'Bu	Diox	0
16	NaO'Bu	DMAc	15
17	NaO'Bu	NMP	7
18	NaO'Bu	DEF	0
19	NaO'Bu	DMF	0

Table S3. Optimization of the bases and solvents for benchmark reaction of CO_2 , 3-bromoiodobenzene, and *N*-(4-fluorobenzyl)but-2-yn-1-amine.^{*a*}

^aReaction conditions: catalyst (PdNP **4c**, 1.0 mol%, 0.69 mg), 3-bromoiodobenzene (0.2 mmol), *N*-(4-fluorobenzyl)but-2-yn-1-amine (0.1 mmol), solvent (1.0 mL), and base (0.15 mmol) were placed in a Schlenk tube connected to a bottle of CO₂ through a gas proportioner with 40 sccm flow rate, and then stirred at 60°C for 3.0 h. ^bYields were determined by ¹H NMR. (DEF = N,N-Diethylformamide).

F H 5a	Me + Br + c	Cat. (1.0 mol%) NaO ^t Bu (1.5 eq.) DMSO (1.0 mL) T, 3h	N Me 7a
Entry	Catalyst	Temperature (°C)	Yield $(\%)^b$
1	4c	80	81
2	4c	60	87
3	4 c	40	90
4 ^{<i>c</i>}	4 c	25	25
5	3c	80	83
6	3c	60	88
7	3c	30	90
8	3c	25	27

Table S4. Optimization of the react temperatures for benchmark reaction of CO_2 , *N*-(4-fluorobenzyl)but-2-yn-1-amine, and 3-bromoiodobenzene.^{*a*}

^aReaction conditions: AcGlu-MeIm-PdNP (1.0 mol%, **3c**, 0.59 mg, **4c**, 0.69 mg), 3-bromoiodobenzene (0.1 mmol), *N*-(4-fluorobenzyl)but-2-yn-1-amine (0.1 mmol), and NaO'Bu (0.15 mmol) were placed in DMSO (1.0 mL) using a Schlenk tube directly connected to a bottle of CO₂ through a gas proportioner with 40 sccm flow rate and then stirred for 3.0 h. ^bYields were determined by ¹H NMR.

F H Me + 5a	$ \begin{array}{c} \text{Cat.} \\ \text{NaO'Bu (1.5 eq.)} \\ \text{DMSO (1.0 mL)} \\ \text{6h} \\ \end{array} $	F CF3 Me 7h
Entry	Catalyst (mol%, mg)	Yield $(\%)^b$
1	1c (1.0, 0.51)	75
2	2c (1.0, 0.55)	78
3	3c (1.0, 0.59)	88
4	4c (1.0, 0.69)	87
7	4c (0.5, 0.35)	17
8	4c (0.3, 0.21)	11
9	4c (0, 0)	0
10	3b (1.0, 0.59)	55
11	4b (1.0, 0.69)	50
12 ^c	3c (1.0, 0.59)	88
13 ^c	4c (1.0, 0.69)	87

Table S5. Optimization of the AcGlu-MeIm-PdNPs catalyst 1c-4c for benchmark cyclization of CO₂, 3-bromoiodobenzene, and propargylic amine.^{*a*}

^aReaction conditions: *N*-(4-fluorobenzyl)but-2-yn-1-amine (0.2 mmol), 3-bromoiodobenzene (0.4 mmol), NaO'Bu (0.3 mmol), DMSO (1.0 mL) were placed in a Schlenk tube directly connected to a bottle of simulated flue gas through a gas proportioner with 40 sccm flow rate then stirred at 60°C for 3.0 h. ^bYields were determined by ¹H NMR. ^cReaction were placed in a Schlenk tube directly connected to a bottle of simulated flue gas (CO₂/N₂, Vol/Vol = 15:85).

F	$H + CF_3 + 5a 6h$	Cat. NaO ^f Bu (1.5 eq.) DMSO (1.0 mL) 60 °C, t	CF ₃ Me 7h
Entry	Catalyst (mol%, mg)	T (°C)/t (min)	Yield $(\%)^b$
1	3c (1.0, 0.59)	60/10	29
2	3c (2.0, 1.18)	60/5	67
3	3c (2.0, 1.18)	60/10	77
4	3c (2.0, 1.18)	60/20	100
5	3c (3.0, 1.77)	60/5	67
6	3c (3.0, 1.77)	60/10	100
7	3c (5.0, 2.95)	60/10	100

Table S6. Optimization of times and the amount of PdNP 3c for benchmark reaction of CO₂, 4-trifluoromethyl-iodobenzene, and *N*-(4-fluorobenzyl)but-2-yn-1-amine.^{*a*}

^aReaction conditions: *N*-(4-fluorobenzyl)but-2-yn-1-amine (0.1 mmol), 4-trifluoromethyl-iodobenzene (0.2 mmol), NaO'Bu (0.15 mmol), the different amount of PdNP **3c**, and DMSO (1.0 mL) were placed in a Schlenk tube directly connected to a bottle of CO₂ then stirred at 60°C. ^bYields were determined by ¹H NMR.

F	H H + 1 + 5a 6	PdNPs NaO'Bu (1.5 eq.) + CO ₂ DMSO (1.0-2.0 mL) 60 °C, 5 min	F J	CF ₃ Me
Entry	Catalyst (2.0 mol%)	Solvent (mL)	Yield $(\%)^b$	TOF (h ⁻¹)
1	3c	DMSO (1.0)	67	402
2	3c	DMSO (1.5)	93	561
3	3c	DMSO (2.0)	100	600
4	3c	DMSO (2.5)	96	576

Table S7. Optimization of TOF for CO₂, 4-trifluoromethyl-iodobenzene, and N-(4-fluorobenzyl)but-2-yn-1-amine benchmark reaction.^{*a*}

^aReaction conditions: *N*-(4-fluorobenzyl)but-2-yn-1-amine (0.1 mmol), 4-trifluoromethyl-iodobenzene (0.2 mmol), NaO'Bu (0.15 mmol), AcGlu-MeIm-PdNP **3c** (2.0 mol%, 1.18 mg), different volumes of DMSO were placed in a Schlenk tube directly connected to a bottle of CO₂ then stirred at 60°C for 5 min. ^bYields were determined by ¹H NMR.

F S	H 5a Me + 6h	+ CO _{2 -} `CF ₃	PdNPs NaO ^r Bu (1.5 eq.) DMSO (1.0 mL) 60 °C, 5 min	F	CF ₃ Me
Entry	Catalyst (2.0 mol%)	m (mg)	t (min)	Yield (%) ^b	TOF $(h^{-1})^b$
1	Pd(OAc) ₂	0.45	180	85	14
2	Na ₂ PdCl ₄	0.61	180	78	13
3	Pd(PPh ₃) ₄	2.31	180	86	14
4	PdCl ₂	0.35	180	84	14
5	PdCl ₂ (dppf)	1.06	180	47	8
6	Pd/C (10 wt%)	0.21	180	33	3
7	PdNP 3c	1.18	5	100	600

Table S8. Comparison of the catalytic activities of different catalysts for benchmarkreactionof CO_2 ,4-fluoromethyl-iodobenzene,andN-(4-fluorobenzyl)but-2-yn-1-amine.^a

^aReaction conditions: *N*-(4-fluorobenzyl)but-2-yn-1-amine (0.1 mmol), 4-fluoromethyl-iodobenzene (0.2 mmol), NaO'Bu (0.15 mmol), Pd catalyst (2.0 mol%), and DMSO (2.0 mL) were placed in a Schlenk tube directly connected to a bottle of CO₂ then stirred at 60 °C. ^bYields and TOFs were determined by ¹H NMR.

F H H + 5a	$ \begin{array}{r} PdNP 3c \\ NaO'Bu \\ CF_3 + CO_2 \\ 6h $	(3.0 mol%) (1.5 eq.) (2.0 mL) , 15 min F O Th CF ₃ K Me Th
Catalytic cycle	Yield (%) ^b	Conversion (%) ^b
1	100	100
2	99	100
3	99	99
4	99	99
5	99	99
6	99	99
7	95	96

Table S9. Catalytic cycle performance of PdNP **3c** for benchmark reaction of CO_2 , 4-trifluoromethyl-iodobenzene, and *N*-(4-fluorobenzyl)but-2-yn-1-amine.^{*a*}

^aReaction conditions: *N*-(4-fluorobenzyl)but-2-yn-1-amine (0.1 mmol), 4-trifluoromethyl-iodobenzene (0.2 mmol), NaO'Bu (0.15 mmol), PdNP **3c** (3.0 mol% 1.77 mg), DMSO (2.0 mL) were placed in a Schlenk tube directly connected to a bottle of CO₂ then stirred at 60°C for 15 min. ^bConversions and yields were determined by ¹H NMR.

Fig. S18. Photos of catalytic system. (a) The image of catalyst system after 1 cycle. (b) The image of catalyst system after 7 cycles.

Fig. S19. Comparative ¹H NMR of fresh and recycled catalyst after 7 cycles.

Fig. S20. (a) HR-TEM image of PdNP 3c after 7 cycles. (b) Size distribution histogram of PdNP 3c after 7 cycles.

Fig. S21. (a) Pseudo-first order kinetic plots of $[PA]_0=[ArI]_0=0.2$, 0.3, 0.4 mmol. (b) Curve fitting of $\ln(k_{app})$ against $\ln([PA]_0)$ at $[PA]_0=[ArI]_0=0.2$, 0.3, 0.4 mmol. (c) Pseudo-first order kinetic plots of $[ArI]_0=0.2$ and $[PA]_0=0.2$, 0.3, 0.4 mmol. (d) Curve fitting of $\ln(k_{app})$ against $\ln[PA]_0$ at $[ArI]_0=0.2$ and $[PA]_0=0.2$, 0.3, 0.4 mmol. (e) Pseudo-first order kinetic plots of $[PA]_0=0.2$ and $[ArI]_0=0.2$, 0.3, 0.4 mmol. (f) curve fitting of $\ln(k_{app})$ against $\ln([PA]_0)$ at $[PA]_0=0.2$ and $[ArI]_0=0.2$, 0.3, 0.4 mmol. (f) curve fitting of $\ln(k_{app})$ against $\ln([PA]_0)$ at $[PA]_0=0.2$ and $[ArI]_0=0.2$, 0.3, 0.4 mmol.

R1 N 5	^e + I—Ar + <mark>0=C=0 №</mark> 6	3c (3.0 mol%) aO ^t Bu (0.15 mmol) DMSO (2.0 mL) 60 °C, 15 min 7	
 Entry	Conversion of 5 (9/) h	Yield (%	$)^b$
 Entry	Conversion of 5 (%)	7 (%) ^b	8 (%) ^b
5a	100	88	12
5b	100	91	9
5c	100	91	9
5d	100	83	17
5e	100	88	12
5f	100	92	8
5g	100	95	5
5h	100	100	0
5i	100	100	0
5j	100	97	3
5k	100	81	19
51	100	81	19
5m	100	95	5
5n	100	89	11
50	100	99	1
5p	100	100	0

Table S10. The 4C-TCR scope of simulated flue gas, propargylic amines, and aryl iodides.^a

^aReaction conditions: propargylic amine (0.1 mmol), aryl iodide (0.2 mmol), NaO'Bu (0.15 mmol), PdNP **3c** (3.0 mol%, 1.77 mg), DMSO (2.0 mL) were placed in a schlenk tube directly connected to a bottle of CO₂ then stirred at 60°C for 15 min. ^bConversions and yields were determined by ¹H NMR.

Catalyst	Dosage (mg)	Temp. (°C)	P. (bar)	t. (h)	Yield (%)	TOF (h ⁻¹)	Ref.
PdNP 3c	1.18	60	1.0	0.83	99	600	herein
PIP-NHO-Pd	0.5	50	1.0	1.0	84	117.7± 1.4	4
PIP-NHO-Pd	2.5	50	1.0	0.5	100	55.6 ± 0.0	4
^a Pd(PPh ₃) ₂ Cl ₂	7.0	35	1.0	12	68	/	5
POP-1-Pd	30	RT	1.0	12	96	20	6
^a PdCl ₂ (dppf)	36.5	40	1.0	22	95	/	7

Table S11. Comparison of catalytic performances of PdNP **3c** with advanced catalysts reported to date in tri-components carboxylative cyclization.

^{*a*} homogeneous catalyst.

Fig. S22. ¹³C NMR comparison spectra of ¹³C-isotope-labeling experiments for **7a**.

Fig. S23. FT-IR spectra of ¹³C-isotope-labeling experiments for **7a**.

Fig. S24. Hydrogen-deuterium exchange experiment in D₂O/DMSO-d₆.

Fig. S25. Partially ¹H NMR spectra monitoring of substrate **5a**, **5a**/PdNP **3c**, and **5a**/PdNP **3c**/heating for 30 min at 60° C in DMSO-*d*₆.

Fig. S26. Partially ¹³C NMR spectra monitoring of substrate **5a**, **5a**/PdNP **3c**, and **5a**/PdNP **3c**/heating for 30 min at 60° C in DMSO-*d*₆.

Fig. S27. Partially ¹H NMR spectra monitoring of substrate **6a**, **6a**/PdNP **3c**, and **6a**/PdNP **3c**/heating for 30 min at 60°C in DMSO-*d*₆.

Fig. S28. Partially ¹³C NMR spectra monitoring of substrate **6a**, **6a**/PdNP **3c**, and **6a**/PdNP **3c**/heating for 30 min at 60° C in DMSO-*d*₆.

2.1.2 Products of CO₂ conversion reaction (7a-7p)^{4,7}

(Z)-3-benzyl-5-(1-(3-bromophenyl)ethylidene)oxazolidin-2-one (7a)

92% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 5H), 7.28 – 7.23 (m, 2H), 7.17 (t, *J* = 7.8 Hz, 1H), 7.08 – 7.03 (m, 1H), 4.46 (s, 2H), 4.02 (dd, *J* = 4.1, 2.0 Hz, 2H), 2.06 (t, *J* = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 141.0, 139.3, 135.0, 130.3, 130.2, 128.9, 128.2, 128.1, 128.0, 125.9, 122.7, 111.1, 47.9, 47.2, 16.4 ppm. HR-MS m/z: [M+H]⁺ calcd for C₁₈H₁₆NO₂Br, 357.03644; found, 357.03654.

(Z)-5-(1-(3-bromophenyl)ethylidene)-3-(4-fluorobenzyl)oxazolidin-2-one (7b)

88% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.0 Hz, 1H), 7.29 (t, J = 1.7 Hz, 1H), 7.22 (ddd, J = 21.5, 10.5, 4.9 Hz, 3H), 7.10 – 6.98 (m, 3H), 4.42 (s, 2H), 4.01 (d, J = 2.1 Hz, 2H), 2.05 (t, J = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 161.3, 155.6, 140.9, 139.1, 130.8, 130.8, 130.3, 130.2, 130.2, 129.9, 129.8, 125.9, 122.8, 115.9, 115.8, 111.3, 47.2, 47.2, 16.4 ppm. HR-MS m/z: [M+Na]⁺ calcd for C₁₈H₁₅NO₂FBr, 398.01624; found, 398.01342.

(Z)-5-(1-(3-bromophenyl)ethylidene)-3-(4-(trifluoromethyl)benzyl)oxazolidin-2-o ne (7c)

91% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.0 Hz, 2H), 7.40 – 7.34 (m, 3H), 7.30 (t, J = 1.8 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 7.06 (ddd, J = 7.7, 1.6, 1.1 Hz, 1H), 4.51 (s, 2H), 4.04 (q, J = 2.1 Hz, 2H), 2.06 (t, J = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 140.9, 139.1, 139.1, 138.9, 130.3, 130.3, 130.3, 128.3, 126.0, 126.0, 125.9, 125.9, 122.8, 111.6, 47.5, 47.4, 16.4 ppm. HR-MS m/z: [M+H]⁺ calcd for C₁₉H₁₅NO₂Br, 425.02383; found, 425.02389.

(Z)-5-(1-(3-bromophenyl)ethylidene)-3-(4-methoxybenzyl)oxazolidin-2-one (7d) 91% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.0 Hz, 1H), 7.29 (d, J = 1.5 Hz, 1H), 7.17 (dd, J = 8.2, 6.0 Hz, 3H), 7.05 (d, J = 7.7 Hz, 1H), 6.86 (d, J = 8.6 Hz, 2H), 4.39 (s, 2H), 3.99 (d, J = 2.1 Hz, 2H), 3.79 (s, 3H), 2.05 (t, J = 2.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 159.5, 155.5, 141., 139.4, 130.3, 130.2, 130.2, 129.5, 126.9, 125.9, 122.7, 114.3, 110.9, 55.3, 47.3, 47.1, 16.4 ppm. HR-MS m/z: [M+Na]⁺ calcd for C₁₉H₁₈NO₃Br, 410.03623; found, 410.03705.

(Z)-5-(1-(3-bromophenyl)ethylidene)-3-butyloxazolidin-2-one (7e)

83% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.29 (m, 5H), 7.28 – 7.23 (m, 2H), 7.17 (t, *J* = 7.8 Hz, 1H), 7.08 – 7.03 (m, 1H), 4.46 (s, 2H), 4.02 (dd, *J* = 4.1, 2.0 Hz, 2H), 2.06 (t, *J* = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 141.0, 139.3, 134.9, 130.3, 130.2, 128.9, 128.2, 128.1, 128.0, 125.9, 122.7, 111.1, 47.9, 47.2, 16.4 ppm. HR-MS m/z: [M+H]⁺ calcd for C₁₅H₁₈NO₂Br, 324.05937; found, 324.05667.

(Z)-5-(1-(3-bromophenyl)ethylidene)-3-(2,6-difluorobenzyl)oxazolidin-2-one (7f) 88% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 1H), 7.35 – 7.26 (m, 2H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 7.7 Hz, 1H), 6.96 – 6.88 (m, 2H), 4.60 (s, 2H), 4.07 (d, *J* = 2.1 Hz, 2H), 2.04 (t, *J* = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 162.7, 160.3, 160.3, 154.8, 141.0, 139.1, 130.6, 130.5, 130.4, 130.3, 130.2, 130.2, 125.8, 122.8, 111.7, 111.7, 111.5, 111.5, 111.1, 110.8, 110.6, 110.4, 47.3, 35.3, 16.4 ppm. HR-MS m/z: [M+Na]⁺ calcd for C₁₈H₁₄NO₂F₂Br, 416.00682; found, 416.00792.

(Z)-3-(4-fluorobenzyl)-5-(1-phenylethylidene)oxazolidin-2-one (7g)

31% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, J = 7.5 Hz, 2H), 7.29 – 7.22 (m, 3H), 7.19 – 7.14 (m, 2H), 7.03 (t, J = 8.6 Hz, 2H), 4.44 (s, 2H), 4.06 (d, J = 2.1 Hz, 2H), 2.10 (t, J = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 163.6, 161.2, 155.7, 138.7, 138.3, 130.9, 130.9, 129.8, 129.7, 128.6, 127.1, 127.1, 115.8, 115.6, 112.3, 77.3, 77.0, 76.7, 47.2, 47.1, 16.3 ppm. HR-MS m/z: [M+H]⁺ calcd for C₁₈H₁₆NO₂F, 298.12378; found, 298.12119.

(Z)-5-(1-(4-chlorophenyl)ethylidene)-3-(4-fluorobenzyl)oxazolidin-2-one (7h)

85% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 8.4 Hz, 2H), 7.23 (dd, J = 8.3, 5.4 Hz, 2H), 7.11 – 6.98 (m, 4H), 4.42 (s, 2H), 4.00 (d, J = 1.9 Hz, 2H), 2.06 (s, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 161.3, 155.6, 138.7, 137.2, 132.9, 130.8, 130.8, 129.9, 129.8, 128.9, 128.5, 115.9, 115.8, 111.4, 47.2, 47.2, 16.4 ppm. HR-MS m/z: $[M+H]^+$ calcd for C₁₈H₁₅NO₂FCl, 332.08481; found, 332.08346.

(Z)-3-(4-fluorobenzyl)-5-(1-(4-(trifluoromethyl)phenyl)ethylidene)oxazolidin-2-o ne (7i)

100% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.1 Hz, 2H), 7.34 – 7.17 (m, 4H), 7.08 – 6.98 (m, 2H), 4.44 (s, 2H), 4.04 (dd, J = 4.1, 2.0 Hz, 2H), 2.10 (t, J = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 161.3, 155.4, 142.6, 139.5, 130.7, 130.7, 129.9, 129.8, 129.3, 129.0, 127.5, 125.7, 125.6, 125.6, 125.6, 125.3, 122.6, 115.9, 115.8, 111.3, 47.2, 29.6, 16.21 ppm. HR-MS m/z: [M]⁺ calcd for C₁₉H₁₅NO₂F₄, 365.10334; found, 365.10330.

(Z)-4-(1-(3-(4-fluorobenzyl)-2-oxooxazolidin-5-ylidene)ethyl)benzonitrile (7j) 100% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.3 Hz, 2H), 7.25 (dd, *J* = 11.4, 5.1 Hz, 4H), 7.04 (t, *J* = 8.6 Hz, 2H), 4.44 (s, 2H), 4.04 (d, *J* = 2.0 Hz, 2H), 2.10 (t, *J* = 1.9 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 163.8, 161.4, 155.2, 143.7, 140.2, 132.5, 130.6, 130.6, 129.9, 129.8, 127.8, 118.5, 116.1, 115.8, 111.1, 110.8, 47.3, 47.2, 16.0 ppm. HR-MS m/z: [M+H]⁺ calcd for C₁₉H₁₅N₂O₂F, 323.11903; found, 323.11791.

(Z)-5-(1-(4-acetylphenyl)ethylidene)-3-(4-fluorobenzyl)oxazolidin-2-one (7k)

97% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 2H), 7.23 (dd, J = 8.3, 4.9 Hz, 4H), 7.01 (dd, J = 11.8, 5.4 Hz, 2H), 4.42 (s, 2H), 4.04 (d, J = 2.1 Hz, 2H), 2.57 (s, 3H), 2.10 (t, J = 2.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 163.8, 161.3, 155.4, 143.8, 139.6, 135.7, 130.7, 130.7, 129.9, 129.8, 128.7, 127.3, 116.0, 115.8, 111.7, 47.3, 47.2, 26.5, 16.1 ppm. HR-MS m/z: [M+H]⁺ calcd for C₂₀H₁₈NO₃F, 340.13435; found, 340.13228.

(Z)-3-(4-fluorobenzyl)-5-(1-(9-oxo-9H-fluoren-3-yl)ethylidene)oxazolidin-2-one (7l)

37% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 7.4 Hz, 1H), 7.52 – 7.41 (m, 4H), 7.34 – 7.27 (m, 2H), 7.26 – 7.21 (m, 2H), 7.02 (t, J = 8.6 Hz, 2H), 4.44 (s, 2H), 4.07 (d, J = 2.0 Hz, 2H), 2.10 (t, J = 2.0 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 193.6, 155.6, 144.0, 143.1, 139.9, 139.2, 134.9, 134.6, 134.2, 133.3, 130.8, 129.9, 129.8, 129.2, 124.5, 122.9, 120.6, 120.3, 116.0, 115.8, 111.7, 47.3, 47.3, 29.7, 16.3 ppm. HR-MS m/z: [M]⁺ calcd for C₂₅H₁₈NO₃F, 399.12652; found, 399.12659.

(Z)-4-(1-(3-benzyl-2-oxooxazolidin-5-ylidene)ethyl)benzonitrile (7m)⁷

95% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 2H), 7.39 – 7.29 (m, 3H), 7.28 – 7.23 (m, 4H), 4.47 (s, 2H), 4.07 – 4.04 (m, 2H), 2.10 (t, J = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 143.7, 140.4, 134.8, 132.4, 128.9, 128.3, 128.1, 127.8, 118.5, 110.9, 110.7, 47.9, 47.4, 15.9 ppm. HR-MS m/z: [M+H]⁺ calcd for C₁₉H₁₆N₂O₂, 304.12118; found, 304.12109.

(Z)-5-(1-(4-acetylphenyl)ethylidene)-3-benzyloxazolidin-2-one (7n)

89% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92 – 7.87 (m, 2H), 7.37 – 7.30 (m, 3H), 7.27 – 7.22 (m, 4H), 4.47 (s, 2H), 4.07 (d, *J* = 2.1 Hz, 2H), 2.58 (s, 3H), 2.11 (t, *J* = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 155.5, 143.8, 139.8, 135.7, 134.9, 128.9, 128.7, 128.2, 128.1, 127.3, 111.5, 47.9, 47.5, 26.5, 16.1 ppm. HR-MS m/z: [M+H]⁺ calcd for C₂₀H₁₉NO₃, 321.13649; found, 321.13643.

(Z)-4-(1-(2-oxo-3-(4-(trifluoromethyl)benzyl)oxazolidin-5-ylidene)ethyl)benzonitr ile (70)

99% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.55 (m, 4H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.28 – 7.24 (m, 2H), 4.52 (s, 2H), 4.07 (q, *J* = 1.9 Hz, 2H), 2.10 (t, *J* = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 155.3, 143.5, 139.9, 138.9, 138.9, 138.9, 138.9, 132.5, 128.3, 128.3, 128.3, 127.8, 127.8, 127.8, 126.0, 125.9, 125.9, 125.1, 118.4, 111.4, 110.8, 47.5, 47.5, 16.0 ppm. HR-MS m/z: [M+H]⁺ calcd for C₂₀H₁₅N₂O₂F₃, 372.10856; found, 372.10869.

(Z)-3-(2,6-difluorobenzyl)-5-(1-(3-(trifluoromethyl)phenyl)ethylidene)oxazolidin-2-one (7p)

100% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 8.1 Hz, 2H), 7.35 – 7.26 (m, 3H), 6.96 – 6.88 (m, 2H), 4.61 (s, 2H), 4.10 (d, J = 2.0 Hz, 2H), 2.09 (t, J = 2.1 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 162.8, 160.4, 160.3, 154.8, 142.6, 139.5, 130.7, 130.6, 130.5, 129.3, 129.0, 127.5, 125.7, 125.7, 125.6, 125.6, 125.3, 122.6, 111.8, 111.7, 111.6, 111.5, 111.2, 110.8, 110.6, 110.4, 77.3, 77.0, 76.7, 47.3, 35.3, 16.3 ppm. HR-MS m/z: [M+Na]⁺ calcd for C₁₉H₁₄NO₂F₅, 406.08369; found, 406.08442.

3. Selected Spectral

7.7.7.7 7.8 7.4.7.7 7.7.7 7.4.7 7.7.7 7.4.7 7.7.3 7.4.4 7.7.3 7.4.4 7.3 7.4.4 7.3 7.336 7.3 7.4.4 7.3 7.336 7.3 7.336 7.3 7.336 7.3 7.336 7.3 7.336 7.3 7.336 7.3 7.336 7.3 7.337 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3 7.338 7.3

 $^1\mathrm{H}$ NMR (400 MHz, DMSO) δ 7.84 (s, 1H), 7.68 (s, 1H), 5.48 (s, 2H), 5.23 (s, 1H), 4.86 (s, 2H), 4.71 (s, 1H), 4.38 (s, 2H), 4.05 (d, J=45.6 Hz, 5H), 2.61 (s, 3H), 1.97 (s, 9H).

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 $^{1}\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.37 (s, 1H), 5.09 (s, -1H), 4.95 (s, -3H), 4.80 (s, -2H), 4.60 (s, -1H), 4.23 (s, -1H), 4.20 (s, -2H), 4.10 (s, -2H), 3.76 (s, -1H), 2.70 (s, -3H), 2.36 (s, -3H), 2.04 (s, -3H), 1.94 (s, -9H), 1.81 – 1.78 (m, -2H), 1.38 – 1.35 (m, -2H), 0.93 (s, -3H).

---0.00

58 / 72

62 / 72

5. References

- 1. L. Kong, Y. Liu, Z. Zhou, Z. He, Y. Bai, G. Xu, Y. Pan, H. Zhen and Y. Chen, *J. Catal.*, 2025, **443**, 115992.
- L. Kong, Z. Tao, Y. Li, H. Gong, Y. Bai, L. Li, X. Zhang, Z. Zhou and Y. Chen, *Chem. Sci.*, 2024, 15, 15321-15331.
- Z.-G. Zhou, J. Li, Y.-Y. Yuan, L.-L. Gao, P. He, G.-T. Luo, Y.-R. Xie, J. Zhang, G.-H. Xu, X.-F. Liao and S.-Y. Zhang, *J. Mol. Liq.*, 2023, 386, 122543.
- 4. Z.-G. Zhou, J. Zhang, Q. Xie, J. Li, P.-P. Xu, X.-F. Zhang, Z.-Y. Du, C.-T. He and X.-M. Chen, *Renewables*, 2024, **2**, 405-413.
- 5. C. Zhou, Y. Dong, J. T. Yu, S. Sun and J. Cheng, *Chem. Commun.*, 2019, **55**, 13685-13688.
- 6. Y. Liang, Q. Wang, X. X. Shen, J. Y. Yang, P. B. Chen, P. Fang and Y. M. Pan, *J. Colloid Interface Sci.*, 2024, **678**, 754-765.
- P. García-Domínguez, L. Fehr, G. Rusconi and C. Nevado, *Chem. Sci.*, 2016, 7, 3914-3918.