Supporting Materials

Machine Learning-Guided Discovery of Thermodynamically Stable Single-Atom Catalysts on Functionalized MXenes for Enhanced Oxygen Reduction and Evolution Reactions

Hengquan Guo^a and Seung Geol Lee^{a,b,*}

 ^a Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
^b Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National

Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

*Corresponding author:

seunggeol.lee@unist.ac.kr (S.G.L.)

Figure S1 Side views of optimized adsorption configurations for *OOH, *O, and *OH intermediates on single-atom-decorated $Ti_3C_2O_2$ surfaces, including (a) Sc- $Ti_3C_2O_2$, (b) Y- $Ti_3C_2O_2$, (c) Zr- $Ti_3C_2O_2$, (d) Lu- $Ti_3C_2O_2$, (e) Hf- $Ti_3C_2O_2$, (f) V- $Ti_3C_2O_2$, (g) Mn- $Ti_3C_2O_2$, and (h) Nb- $Ti_3C_2O_2$.

Figure S2 Side views of optimized adsorption configurations for *OOH, *O, and *OH intermediates on single-atom-decorated $Ti_3C_2Se_2$ and $Ti_3C_2S_2$ surfaces, including (a) Sc- $Ti_3C_2Se_2$, (b) Y- $Ti_3C_2Se_2$, (c) Sc- $Ti_3C_2S_2$, (d) V- $Ti_3C_2S_2$, (e) Cr- $Ti_3C_2S_2$, (f) Mn- $Ti_3C_2S_2$, (g) Fe- $Ti_3C_2S_2$, (h) Ni- $Ti_3C_2S_2$, and (i) Cu- $Ti_3C_2S_2$.

Figure S3 Side views of optimized adsorption configurations for *OOH, *O, and *OH intermediates on single-atom-decorated $Ti_3C_2S_2$ surfaces, including (a) $Zn-Ti_3C_2S_2$, (b) $Y-Ti_3C_2S_2$, (c) $Zr-Ti_3C_2S_2$, (d) Nb- $Ti_3C_2S_2$, (e) Ag- $Ti_3C_2S_2$, (f) Cd- $Ti_3C_2S_2$, (g) Lu- $Ti_3C_2S_2$, and (h) Hf- $Ti_3C_2S_2$.

Figure S4 Free energy diagrams of transition metal promoted (a) $Ti_3C_2O_2$, (b) $Ti_3C_2Se_2$, and (c) $Ti_3C_2S_2$ for ORR/OERs (pH= 14, U = 0 V).

 $\textbf{Table S1} O_2 \text{ adsorption energy with and without D3 correction on Ni-Ti_3C_2S_2 and Cu-Ti_3C_2S_2.}$

E _{ads} (eV)	DFT	DFT-D3
Ni-Ti ₃ C ₂ S ₂	-0.92	-0.97
Cu-Ti ₃ C ₂ S ₂	-0.54	-0.63

 $Ti_3C_2S_2$ Ti₃C₂O₂ $Ti_3C_2F_2$ eV 2 site 2 site 1 site 3 site 1 site 2 site 3 site 1 site 3 site 0.29 0.00 0.29 0.58 0.00 0.58 0.00 0.00 1.47 Sc V 0.10 0.00 0.10 0.60 0.00 2.76 0.00 0.00 0.42 0.00 0.10 0.41 0.00 0.03 Cr 1.87 1.24 0.06 0.00 Mn 0.00 0.03 2.18 0.38 0.00 1.64 0.05 0.00 0.29 0.04 0.00 2.45 0.33 0.00 1.82 0.17 0.00 0.16 Fe 0.01 0.00 2.39 0.53 0.00 0.00 0.07 Co 1.72 0.15 Ni 0.00 0.13 2.35 0.33 0.00 1.18 0.03 0.00 1.23 0.00 0.26 1.35 0.26 0.00 0.65 0.00 0.02 0.03 Cu Zn 0.00 0.17 0.97 0.32 0.00 0.52 0.00 0.00 0.03 Υ 0.28 0.00 3.09 0.50 0.00 3.36 0.35 0.00 1.57 Zr 0.30 0.00 4.00 0.46 0.00 3.76 0.00 2.64 Nb 0.30 0.00 3.85 0.54 0.00 3.37 0.00 1.94 Mo 0.08 0.00 2.74 0.63 0.00 2.15 0.01 0.00 -0.04 Tc 0.00 0.00 2.80 0.63 0.00 1.75 0.00 0.03 0.12 0.00 0.36 3.02 0.58 0.00 1.59 1.24 0.00 2.31 Ru 0.00 0.38 2.48 0.21 0.00 1.10 0.00 0.91 Rh 0.86 Pd 0.00 0.59 1.32 0.00 0.12 0.31 0.15 0.00 0.40 0.00 0.09 0.55 0.03 0.00 0.32 0.01 0.00 0.05 Ag Cd0.00 0.00 0.36 0.09 0.00 0.07 0.00 0.00 0.03 Lu 0.28 0.00 3.00 0.54 0.00 3.11 0.04 0.00 -0.28 Hf 0.37 0.00 0.00 0.58 0.00 3.82 0.00 0.19 Ta 0.40 0.00 4.33 0.55 0.00 3.98 0.00 0.03 0.44 W 0.25 0.00 3.64 0.77 0.00 3.08 0.00 0.04 -0.02 Re 0.17 0.00 3.41 1.00 0.00 2.21 0.09 0.00 0.01 0.00 0.09 3.49 1.15 0.00 1.84 0.00 0.49 0.49 Os Ir 0.00 0.06 3.11 0.56 0.00 1.30 0.00 0.30 2.79 Pt 0.00 0.27 1.82 0.07 0.00 0.11 0.00 0.59 0.59 Au 0.00 0.16 0.21 0.00 0.03 -0.17 0.00 0.01 0.04 0.00 0.00 0.06 0.01 0.00 0.04 0.00 0.00 0.03 Hg Ti₃C₂Cl₂ Ti₃C₂Se₂ eV 2 site 2 site 1 site 3 site 1 site 3 site 0.00 0.08 1.17 0.08 0.00 2.81 Sc V 0.56 0.00 0.56 0.04 0.00 2.06 0.00 0.30 1.49 Cr 0.00 0.10 0.44 0.00 0.09 0.52 0.00 0.20 4.00 Mn

Table S2 Relative energies of transition metal atoms placed on three distinct adsorption sites (1 site, 2 site, and 3 site) of functionalized $Ti_3C_2T_2$ MXene surfaces (T = S, O, F, Cl, Se), calculated via density functional theory (DFT). For each metal–surface combination, the energy is referenced to the most stable configuration (set as 0 eV).

Fe	0.00	0.69	0.80	0.00	0.32	2.21
Со	0.02	0.00	1.22	0.00	0.30	2.52
Ni	0.14	0.00	1.31	0.00	0.31	2.19
Cu	0.00	0.10	0.52	0.00	0.34	1.20
Zn	0.00	0.00	0.04	0.10	0.00	0.04
Y	0.00	0.13	0.78	0.07	0.00	2.27
Zr	0.00	0.34	0.96	0.00	0.03	3.02
Nb	0.00	0.00	0.64	0.00	0.25	2.87
Mo	0.00	0.05	0.25	0.00	0.41	2.29
Tc	0.00	0.16	0.45	0.00	0.54	2.70
Ru	0.00	0.60	1.08	0.00	0.59	3.09
Rh	0.00	0.32	0.64	0.00	0.50	2.59
Pd	0.00	0.10	0.19	0.00	0.49	1.20
Ag	0.05	0.00	0.17	0.00	0.02	0.46
Cd	0.00	0.00	0.04	0.02	0.00	0.11
Lu	0.00	0.11	0.20	0.10	0.00	1.78
Hf	0.00	0.41	0.11	0.09	0.00	0.09
Та	0.00	0.28	0.91	0.00	0.16	3.25
W	0.00	0.11	0.20	0.00	0.33	2.88
Re	0.00	0.08	0.15	0.00	0.45	3.10
Os	0.00	0.11	0.37	0.00	0.49	3.50
Ir		0.00	0.02	0.00	0.19	3.09
Pt	-0.15	0.00	-0.21	0.00	0.92	1.69
Au	0.07	0.00	0.06	0.07	0.00	0.15
Hg	0.00	0.00	0.03	0.00	0.00	0.05

O-O bond length/Å		End on	Side on			End on	Side on
Ti ₃ C ₂ S ₂	Sc	1.300	1.384	Ti ₃ C ₂ O ₂	Sc	1.301	1.359
	Zn	1.296	1.296		Y	1.300	1.398
	Y	1.312	1.421		Zr	1.325	1.491
	Zr(noD3)	1.315	1.487		Lu	1.301	1.362
	Lu	1.301	1.418		Hf	1.326	1.504
	Hf	1.316	1.506		V	1.281	1.452
	Mn	1.266	1.391		Mn	1.263	1.382
	V	1.278	1.435		Nb	1.310	1.483
	Cr	1.276	1.420		Hg	1.233	1.233
	Fe	1.263	1.379		Sc	1.311	1.481
	Ni	1.260	1.325	$Ti_3C_2Se_2$	Y	1.325	1.481
	Cu	1.266	1.267		Hg	1.233	1.233
	Nb	1.298	1.472				
	Ag	1.246	1.258				
	Cd	1.294	1.288				
	Hg	1.234	1.234				

Table S3 O-O bond length of oxygen molecular adsorbed $TM-Ti_3C_2T_2(T = O, S, and Se, TM = transition metal).$

eV	ΔG_{OOH^*}	ΔG_{O^*}	ΔG_{OH^*}
$sc-Ti_3C_2S_2$	2.38	0.78	-1.26
V-Ti ₃ C ₂ S ₂	1.98	-1.22	-1.19
Cr-Ti ₃ C ₂ S ₂	2.62	-0.51	-0.64
Mn-Ti ₃ C ₂ S ₂	3.23	0.63	0.00
Fe-Ti ₃ C ₂ S ₂	3.30	1.25	-0.03
Ni-Ti ₃ C ₂ S ₂	3.85	2.23	0.92
Cu-Ti ₃ C ₂ S ₂	4.04	3.05	1.09
$Zn-Ti_3C_2S_2$	3.47	3.00	0.06
Y-Ti ₃ C ₂ S ₂	2.32	0.90	-1.36
Zr-Ti ₃ C ₂ S ₂	1.83	-1.17	-1.92
Nb-Ti ₃ C ₂ S ₂	1.49	-1.88	-1.82
Ag-Ti ₃ C ₂ S ₂	4.59	3.78	1.64
$Cd-Ti_3C_2S_2$	3.81	3.26	0.43
$Lu-Ti_3C_2S_2$	2.30	1.19	-1.42
Hf-Ti ₃ C ₂ S ₂	1.44	-1.22	-2.33
Sc-Ti ₃ C ₂ S ₂	2.43	1.28	-1.23
V-Ti ₃ C ₂ O ₂	1.86	-1.26	-1.16
Mn-Ti ₃ C ₂ O ₂	3.32	1.13	0.03
Y-Ti ₃ C ₂ O ₂	2.43	1.46	-1.26
Zr-Ti ₃ C ₂ O ₂	1.48	-1.29	-2.29
Nb-Ti ₃ C ₂ O ₂	1.59	-2.40	-2.06
Lu-Ti ₃ C ₂ O ₂	2.43	1.72	-1.30
Hf-Ti ₃ C ₂ O ₂	1.20	-1.10	-2.60
Sc-Ti ₃ C ₂ Se ₂	2.17	-0.14	-1.46
Y-Ti ₃ C ₂ Se ₂	2.04	-0.14	-1.63

Table S4 Calculated Gibbs free energy changes (ΔG_{OOH^*} , ΔG_{O^*} , and ΔG_{OH^*}) for *OOH, *O, and *OH intermediates at pH = 0 and U = 0 V.