Supporting Information

Engineering intense Ru-TiO₂ interaction for robust hydrogen oxidation reaction

Xiao Jin,^a Xiaoyu Zhang,^{*b} Bei Yang,^a Xiaozhong Zheng,^a Mingxia Gao,^a Hongge Pana,^{a,c} and Wenping Sun^{*a,d}

a. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China. Email: wenpingsun@zju.edu.cn

b. Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China. E-mail: Zhangxiaoyu@zjut.edu.cn

c. Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, China.

d. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.

Experimental Section

Materials

Titanium trichloride solution (15%~20% TiCl₃ dispersed in 30% HCl) and Nafion solution (5 wt%) were purchased from Aladdin. Sodium nitrate (NaNO₃), potassium hydroxide (KOH), copper sulfate pentahydrate (CuSO₄·5H₂O) and ethylene glycol (EG) were purchased from Macklin. Trihydrate ruthenium trichloride (RuCl₃·3H₂O) was purchased from RHAWN, and anhydrous ethanol was purchased from Sinopharm Chemical Reagent Co. Ltd. The water used in all experiments was ultrapure deionized water with a resistivity of 18.2 M Ω cm⁻¹ at room temperature.

Synthesis of D-TiO₂

In a typical synthesis of D-TiO₂, 3 mL TiCl₃, 1 mL deionized water and 30 mL ethylene glycol were thoroughly mixed and transferred into a hydrothermal reactor with a PTFE inner liner. After reacting at 150°C for 4 hours, the products were centrifuged and washed three times with deionized water and ethanol, then dried overnight at 80°C in a vacuum oven. The dried products were calcined at 500°C for 2 hours in a 10% H₂/Ar atmosphere (5°C min⁻¹) to obtain D-TiO₂.

Synthesis of Ru/TiO₂

To obtain a series of Ru/TiO₂ electrocatalysts, 20 mg D-TiO₂ and 37.6 μ L aqueous RuCl₃ solution (1 mol L⁻¹) were mixed in 20 mL deionized water. After ultrasonication for 30 minutes, 2 g NaNO₃ was added into the solution. Then the above mixture was stirred in an 80°C water bath until evaporated. The dry mixture was calcined at 350°C for 1 hour at a heating rate of 5°C min⁻¹. Calcination products were washed three times with deionized water and ethanol, then dried overnight at 80°C to get RuO₂/TiO₂ precursor. Ru/TiO₂ electrocatalysts were finally obtained by annealing RuO₂/TiO₂ precursors at 200, 300, 400, and 450°C for 1 hour in a 10% H₂/Ar atmosphere (5°C min⁻¹), and they were designated as Ru/TiO₂-200, Ru/TiO₂-300, Ru/TiO₂-400, and Ru/TiO₂-450, respectively.

Synthesis of Ru/TiO₂-H

Comparison sample Ru/TiO₂-H was synthesized by a hydrothermal approach. In a typical synthesis process, 20 mg D-TiO₂ and 37.6 μ L aqueous RuCl₃ solution (1 mol L⁻¹) were mixed with 30 mL of ethylene glycol and transferred to a hydrothermal reactor after stirring for 1 hour. The reaction was carried out at 180°C for 2 hours. After cooling to room temperature, the products were centrifuged and washed three times with deionized water and ethanol, then dried overnight at 80°C to acquire

final products Ru/TiO_2 -H.

Synthesis of Ru/TiO₂-P

Comparison sample Ru/TiO₂-P was synthesized through a pyrolysis process. 40 mg D-TiO₂ and 75.2 μ L aqueous RuCl₃ solution (1 mol L⁻¹) were mixed with 20 mL deionized water. After ultrasonication for 30 minutes, the mixture solution was stirred in an 80°C water bath until evaporated. The dried mixture was calcined at 500°C for 2 hours in a 10% H₂/Ar atmosphere (5°C min⁻¹). The pyrolyzed products were collected and washed three times with deionized water and ethanol to remove possible residual ions, and then dried overnight at 80°C to acquire final products Ru/TiO₂-P.

Characterizations

The X-ray diffraction patterns were collected by a Rigaku MiniFlex600 X-ray diffractometer with Cu K α radiation (λ = 1.5418 Å). TEM and HRTEM images were obtained through a JEOL JEM2100F electron microscope. XPS spectra were collected with American Thermo Scientific K-Alpha spectrometer equipped with Al K α photon source. ICP-OES testing was conducted with a Thermo Fisher iCAP PRO spectrometer. The XAS spectra of Ru-K edge were collected at beamline BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), China. Data processing was performed with Athena and Artemis modules. A Fortran HAMA was used for wavelet transformation (WT).

Electrochemical Measurements

All electrochemical measurements were performed in a standard three-electrode cell system with an electrochemical workstation (Chi 760E and IVIUMnSTAT). A graphite rod and an Hg/HgO electrode were used as the counter electrode and reference electrode, respectively. The Hg/HgO electrode was calibrated against the reversible hydrogen electrode (RHE). The working electrode was prepared by coating catalyst ink (10 μ L) on the glass carbon electrode (GCE). A typical composition of catalyst ink was as follows: 2 mg electrocatalyst and 1 mg carbon black were dispersed in a solution containing 400 μ L ethanol, 80 μ L deionized water and 20 μ L Nafion solution (5 wt%). The above mixture was ultrasonically dispersed for 30 minutes to obtain a homogeneous ink before being coated on the electrode. HOR tests were conducted in H₂-saturated 0.1 M KOH solution at a rotation speed of 1600 rpm and a scan rate of 5 mV s⁻¹ with 95% iR compensation. The durability of samples was evaluated by chronoamperometry on a rotating disk electrode (catalyst loading: 0.2 mg cm⁻²).

The kinetic current density (j_k) was calculated based on the Koutechy-Levich equation:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_d} \#(1)$$

where *j* is the measured current density and j_d is the diffusion current density. j_d can be obtained based on Nernstian diffusion overpotential equation:

$$j_d = j_l \left(1 - e^{-\frac{2F\eta}{RT}}\right) \#(2)$$

where j_{l} is the diffusion-limited current density and η is the overpotential.

The specific exchange current density (j_0) was obtained through fitting j_k with Butler-Volmer equation:

$$j_k = j_0 \left(e^{\frac{\alpha F}{RT}\eta} - e^{\frac{-(1-\alpha)F}{RT}\eta} \right) \#(3)$$
 where α is the charge transfer coefficient, *F* is the Faraday's Constant

(96485 C mol⁻¹), *R* is the universal gas constant (8.314 J mol⁻¹ K⁻¹), and *T* is the temperature (K), α and j_0 were set as variables.

The electrochemically active surface area (ECSA) of the electrocatalysts was determined by copper underpotential deposition (Cu_{UPD}). Firstly, cyclic voltammetry was performed at the potential range of 0-0.85 V (vs. RHE) in an Ar-saturated 0.5 M H₂SO₄ solution to obtain the background, with a scan rate of 50 mV s⁻¹. Then the electrode was polarized at 0.25 V (vs. RHE) for 100 s in an Ar-saturated 0.5 M H₂SO₄ solution containing 5 mM CuSO₄ to deposit a monolayer of Cu. Subsequently, the Cu_{UPD} dissolution voltammetry curve was collected with a potential range of 0.25-0.85 V (vs. RHE) and a scanning rate of 50 mV s⁻¹. The ECSA (10⁴ cm² mg_{metal}⁻¹) can be calculated by following equation (4) and (5):

$$Q_{Cu} = \frac{\int idE}{v} \#(4)$$
$$ECSA = \frac{Q_{Cu}}{Q_s} \#(5)$$

where Q_{Cu} is the measured integral charge (C), *v* is the scan rate (mV s⁻¹), and Q_s is the surface charge density which is assumed to be 420 μ C cm_{metal}⁻² for a monolayer adsorption of Cu on the catalyst. The measurement of underpotential deposited hydrogen (H_{UPD}) was conducted in the potential range of 0.02-0.6 V (vs. RHE) at a scan rate of 50 mV s⁻¹ in Ar-saturated 0.1 M KOH solution. For CO stripping tests, the working electrode was firstly held at 0.1 V (vs. RHE) for 10 minutes in CO-saturated 0.1 M KOH solution to adsorb CO. Then the electrode was transferred into an Ar-saturated 0.1 M KOH solution and cyclic voltammetry was performed at the range of 0-1.1 V (vs. RHE) at a scan rate of 50 mV s⁻¹ to obtain the CO stripping curve.

Figure S1 (a, b) HRTEM images of RuO₂/TiO₂.

Figure S2 Electron microscopy images of Ru/TiO_2 -200. (a) HRTEM image. (b, c) Enlarged images of white dashed rectangular regions in (a). (d-g) The corresponding FFT and inverse FFT patterns of yellow dashed rectangular regions in (b) and (c), respectively.

Figure S3 Electron microscopy images of Ru/TiO_2 -300. (a) HRTEM image. (b, c) Enlarged images of white dashed rectangular regions in (a). (d-g) The corresponding FFT and inverse FFT patterns of yellow dashed rectangular regions in (b) and (c), respectively.

Figure S4 Electron microscopy images of Ru/TiO_2 -450. (a) HRTEM image. (b, c) Enlarged images of white dashed rectangular regions in (a). (d-g) The corresponding FFT and inverse FFT patterns of yellow dashed rectangular regions in (b) and (c), respectively.

Figure S5 Size statistics of Ru nanoparticles. (a-d) HRTEM images of Ru/TiO_2 -200, Ru/TiO_2 -300, Ru/TiO_2 -400, and Ru/TiO_2 -450. (e-h) The corresponding histogram of Ru nanoparticles size distribution for the above samples.

Figure S6 X-ray photoelectron spectroscopy spectra of Ru/TiO_2 -200 and Ru/TiO_2 -300. (a) C 1s and Ru 3p spectra. (b) Ti 2p and Ru 3p spectra.

Figure S7 Ru K-edge EXAFS spectra and the corresponding fitting results of Ru foil, shown in (a) k^3 weighted *k*-space, (b) k^3 weighted *R*-space (FT magnitude and imaginary, without phase correction).

Figure S8 Ru K-edge EXAFS spectra and the corresponding fitting results of Ru/TiO₂-200, shown in (a) k^3 weighted *k*-space, (b) k^3 weighted *R*-space (FT magnitude and imaginary, without phase correction).

Figure S9 Ru K-edge EXAFS spectra and the corresponding fitting results of Ru/TiO₂-300, shown in (a) k^3 weighted *k*-space, (b) k^3 weighted *R*-space (FT magnitude and imaginary, without phase correction).

Figure S10 Ru K-edge EXAFS spectra and the corresponding fitting results of Ru/TiO₂-400, shown in (a) k^3 weighted *k*-space, (b) k^3 weighted *R*-space (FT magnitude and imaginary, without phase correction).

Figure S11 Ru K-edge EXAFS spectra and the corresponding fitting results of Ru/TiO₂-450, shown in (a) k^3 weighted *k*-space, (b) k^3 weighted *R*-space (FT magnitude and imaginary, without phase correction).

Figure S12 Wavelet transforms for the k^3 -weighted EXAFS for RuO_2/TiO_2 , Ru/TiO_2 -200, Ru/TiO_2 -300, and Ru/TiO_2 -450.

Figure S13 LSV curves of Ru/TiO₂ samples in H₂-saturated and Ar-saturated 0.1 M KOH solution.

Figure S14 Cu-UPD stripping voltammograms curves (colored lines) of (a) Ru/TiO₂-200, (b) Ru/TiO₂-300, (c) Ru/TiO₂-400, and (d) Ru/TiO₂-450 together with their background curves (black lines) obtained in the absence of CuSO₄.

Figure S15 Chronoamperometry response of Ru/TiO_2 electrocatalysts at an over potential of 100 mV operated on RDE.

Figure S16 CO stripping voltammograms of Ru/TiO₂-200, Ru/TiO₂-300, Ru/TiO₂-400, and Ru/TiO₂-450.

Figure S17 HRTEM images of (a, b) Ru/TiO₂-H and (c, d) Ru/TiO₂-P.

Figure S18 LSV curves of Ru/TiO_2 -H and Ru/TiO_2 -P in H₂-saturated 0.1 M KOH at a rotation rate of 1600 rpm.

Figure S19 Ti 2p and Ru 3p XPS spectra of Ru/TiO₂-H and Ru/TiO₂-P.

Figure S20 (a) Ru K-edge XANES spectra of Ru/TiO₂-400, Ru/TiO₂-H, Ru/TiO₂-P, and reference materials (Ru foil and RuO₂). (b) Fourier-transformed k³-weighted χ (k)-function of the Ru K-edge EXAFS spectra of Ru/TiO₂-400, Ru/TiO₂-H, Ru/TiO₂-P, and reference materials (Ru foil and RuO₂). (c, d) Wavelet transforms for the k³-weighted EXAFS for Ru/TiO₂-H and Ru/TiO₂-P.

Figure S21 (a) HER polarization curves of RuO_2/TiO_2 , Ru/TiO_2 , and Pt/C in 1.0 M KOH. (b) HER overpotentials at 10 mA cm⁻² for RuO_2/TiO_2 , Ru/TiO_2 , and commercial Pt/C. (c) Tafel slope of RuO_2/TiO_2 , Ru/TiO_2 , Ru/TiO_2 , and commercial Pt/C.

Sample	Shell	CNa	R(Å) ^b	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0(eV)^d$	R factor ^e
Ru/TiO ₂ -200	Ru-Ru	6.6	2.67	0.004	4.60	0.013
	Ru-O	3.6	1.96	0.009		
Ru/TiO ₂ -300	Ru-Ru	7.8	2.67	0.004	4.58	0.009
	Ru-O	2.9	1.96	0.008		
Ru/TiO ₂ -400	Ru-Ru	8.3	2.67	0.004	4.46	0.010
	Ru-O	2.3	1.95	0.007		
Ru/TiO ₂ -450	Ru-Ru	9.2	2.67	0.004	4.91	0.010
	Ru-O	1.9	1.96	0.006		
Ru foil	Ru-Ru	12	2.67	0.003	4.63	0.010

Table S1 The fitting parameters of Ru K-edge EXAFS for as-prepared samples.

CN was fixed as 12 for fitting the Ru K-edge EXAFS of Ru foil, thus determining the value of S_0^2 as 0.727. Then S_0^2 was set to 0.727 for following fitting.

a: CN is the coordination number;

b: R is interatomic distance;

c: σ^2 is Debye-Waller factor;

d: ΔE_0 is edge-energy shift;

e: R factor is the goodness of fit.

Sample	j ₀ (mA cm ⁻²)	j _{0,m} (A mg⁻¹ _{Ru})	j _{0,s} (mA cm ⁻² _{ECSA})	j _{k,m} (A mg⁻¹ _{Ru})	j _{k,s} (mA cm ⁻² _{ECSA})
Ru/TiO ₂ -200	2.51	0.102	0.235	0.282	0.648
Ru/TiO ₂ -300	3.04	0.124	0.243	0.384	0.752
Ru/TiO ₂ -400	4.01	0.163	0.484	0.559	1.657
Ru/TiO ₂ -450	5.92	0.242	0.921	1.529	5.824
Pt/C	4.87	0.119	0.100	0.272	0.229

 Table S2 Performance comparison of various samples.

Sample	Ru content (wt%)
Ru/TiO ₂ -200	10.461
Ru/TiO ₂ -300	10.996
Ru/TiO ₂ -400	12.035
Ru/TiO ₂ -450	12.207
Average	11.42

Table S3 The ICP-OES test results of Ru content for Ru/TiO_2 series samples.