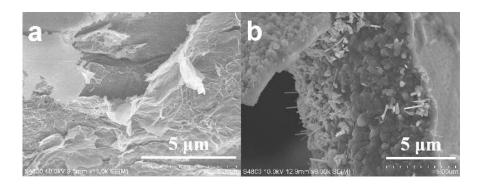
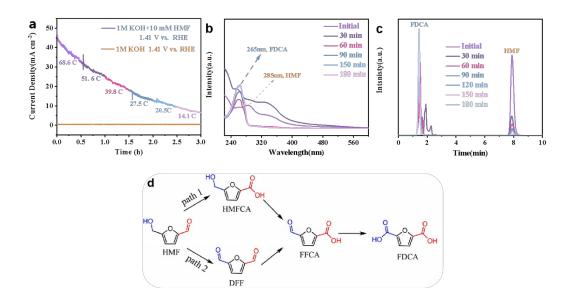
Electrooxidation of 5-Hydroxymethylfurfural and Electroreduction of Nitrobenzene by Hollow CoFeP Cubes/rGO/Ni Foam

Xinheng Li, a,d,1,* Lei Qi, b,d,1, Wanfei Li,c Mei Wang,d Jianbin Xue,d Muzi Chen,e Guixin Wang f


- ^a College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, Sichuan Province, China.
- ^b Gansu Yinguang Juyin Chemical Engineering Corp., Baiyin 730900, Gansu Province, China.
- ^c Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China
- ^d The State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Base of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China.
- ^e Analysis and Testing Center, Soochow University, Suzhou 215123, Jiangsu Province, China
- f School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan Province, China
- ¹ Authors who have equal contribution to this work.

Corresponding authors: xinhengli@suse.edu.cn.


Table of contents

rGO/NF samples4
Figure S2. (a) i-t curves of HMFOR; (b ,c) UV-Vis and HPLC chromatograms corresponding i-t process; (d) Possible reaction pathway for electrochemical HMF oxidation to FDCA in alkaline solution
Figure S3. LSV curve of CoFeP/P-rGO/NF acted as a bifunctional catalytst for HMFOR and HER in a dual electrode system without iR compensation
Figure S4. HPLC chromatograms (a,b,c) of NB electroreduction to produce aniline and azobenzene by the as-obtained CoFeP/P-rGO/NF samples8
Figure S5. Control experiments of OER (a,b,c) and HER (d,e,f) of the as-obtained CoFeP/P-rGO/NF samples. (a,d) LSV curves; (b,e) Tafel plots; (c,f) EIS plots and (g) I-t curves of CoFeP/P-rGO/NF at 1.5 V vs. RHE and -0.19 V vs. RHE in 1 M KOH
Figure S6. The GC-MS analysis of the products obtained through electrocatalytic reduction for 1 h at -0.2V revealed that the primary product was aniline (AB), along with unreacted NB
reduction for 1 h at -0.2V revealed that the primary product was aniline (AB), along
reduction for 1 h at -0.2V revealed that the primary product was aniline (AB), along with unreacted NB
reduction for 1 h at -0.2V revealed that the primary product was aniline (AB), along with unreacted NB

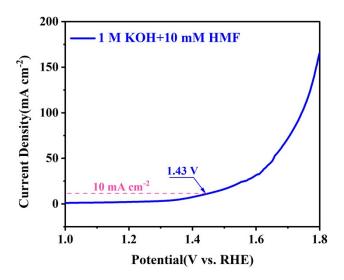

Table S1. Comparison of HMFOR performance coupled with HER between	this work
and recent literature in 1 M KOH + 10 mM HMF	7
Table S2. Comparison of overall water splitting performance of reported bit	functional
catalysts in 1 M KOH	15

Figure S1. Cross-section SEM images (a, b) of the as-obtained rGO/NF and CoFeP/P-rGO/NF samples.

Figure S2. (a) i-t curves of HMFOR; (b,c) UV-Vis and HPLC chromatograms corresponding i-t process; (d) Possible reaction pathway for electrochemical HMF oxidation to FDCA in alkaline solution.

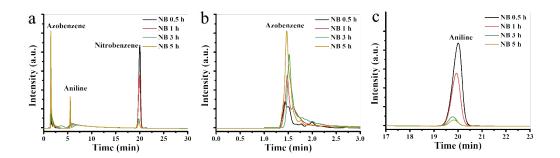
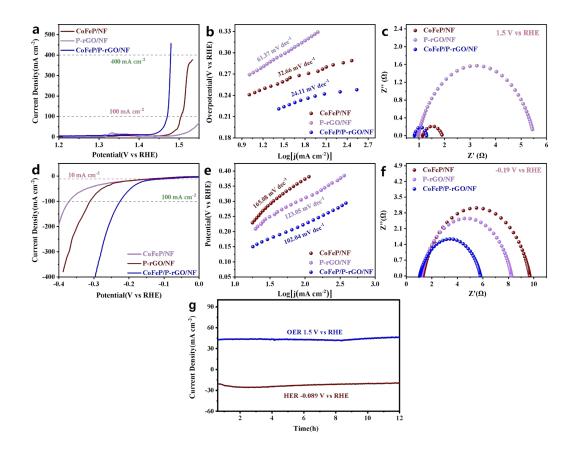
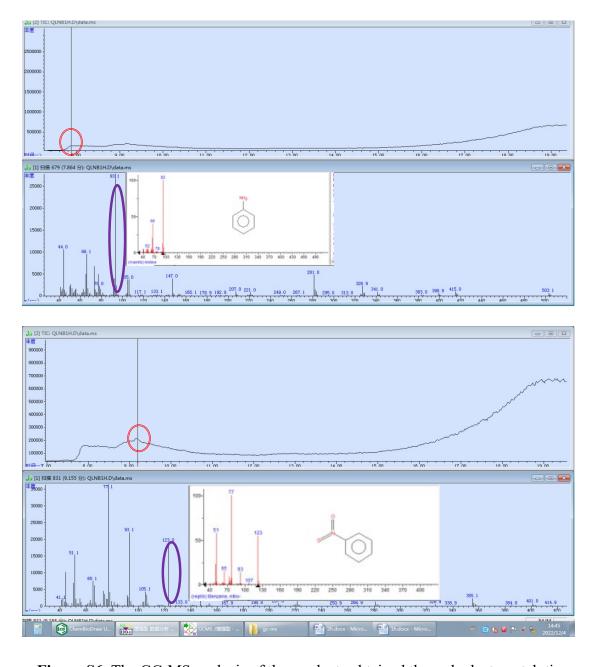
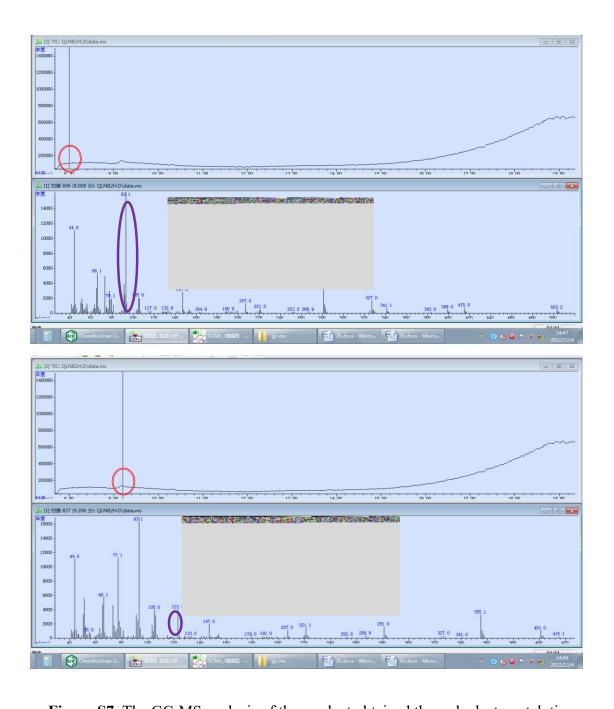

Figure S3. LSV curve of CoFeP/P-rGO/NF acted as a bifunctional catalytst for HMFOR and HER in a dual electrode system without iR compensation.

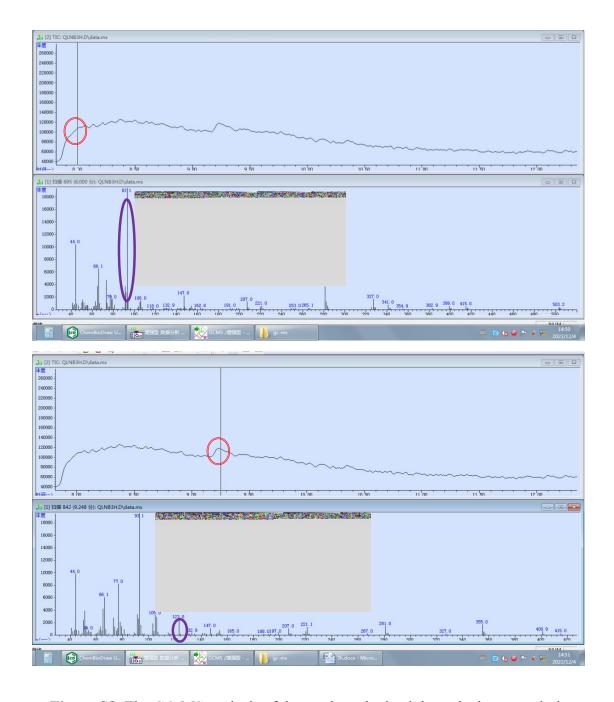
Table S1. Comparison of HMFOR performance coupled with HER between this work and recent literature in 1 M KOH + 10 mM HMF.

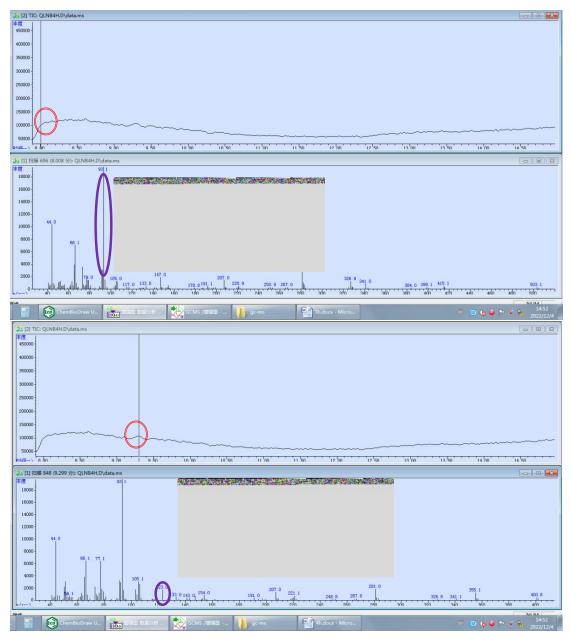

Catalysts	Voltage (10 mA cm ⁻²)	FE(%)	Ref.
CoFeP/P-rGO/NF	1.43	100	This work
hp-Ni/NF	1.50	>97	[1]
NiSe@NiO _X	1.50	>99	[2]
N-Ni ₃ S ₂ - MoO ₂ /NF	~1.50	94.9	[3]
Ni ₃ N@C/NF	1.48	~98	[4]
Co-P/CF	>1.4	90	[5]
CoNW/NF	1.50	95	[6]

References:


- [1] B. You, X. Liu, X. Liu, et al. Efficient H₂ Evolution Coupled with Oxidative Refining of Alcohols via A Hierarchically Porous Nickel Bifunctional Electrocatalyst. ACS Cata. 7 (2017) 4564-4570. https://doi.org/10.1021/acscatal.7b00876.
- [2] L. Gao, Z. Liu, J. Ma, et al. NiSe@NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Appl. Catal. B. 261 (2020) 118235. https://doi.org/10.1016/j.apcatb.2019.118235.
- [3] L. Wang, J. Cao, C. Lei, et al. Strongly Coupled 3D N-Doped MoO₂/Ni₃S₂ Hybrid for High Current Density Hydrogen Evolution Electrocatalysis and Biomass Upgrading. ACS Appl. Mater. Inter. 11 (2019) 27743-27750. https://doi.org/10.1021/acsami.9b06502.
- [4] S. Wang, N. Zhang, L. Tao, et al. Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Identified Pathway by in Situ Sum Frequency Generation Vibrational Spectroscopy. Angew. Chem. Int. Ed. 58 (2019) 15895-15903. https://doi.org/10.1002/anie.201908722.
- [5] N. Jiang, B. You, R. Boonstra, et al. Integrating Electrocatalytic 5-Hydroxymethylfurfural Oxidation and Hydrogen Production via Co-P-Derived Electrocatalysts. ACS Energy Lett. 1 (2016) 386-390. https://doi.org/10.1021/acsenergylett.6b00214.
- [6] Z. Zhou, C. Chen, M. Gao, et al. In situ anchoring of a Co₃O₄ nanowire on nickel foam: an outstanding bifunctional catalyst for energy-saving simultaneous reactions. Green Chemistry. 21 (2019) 6699-6706. https://doi.org/10.1039/C9GC02880C.


Figure S4. HPLC chromatograms (a,b,c) of NB electroreduction to produce aniline and azobenzene by the as-obtained CoFeP/P-rGO/NF samples.


Figure S5. Control experiments of OER (a,b,c) and HER (d,e,f) of the as-obtained CoFeP/P-rGO/NF samples. (a,d) LSV curves; (b,e) Tafel plots; (c,f) EIS plots and (g) I-t curves of CoFeP/P-rGO/NF at 1.5 V vs. RHE and -0.19 V vs. RHE in 1 M KOH.


Figure S6. The GC-MS analysis of the products obtained through electrocatalytic reduction for 1 h at -0.2V revealed that the primary product was aniline (AB), along with unreacted NB.

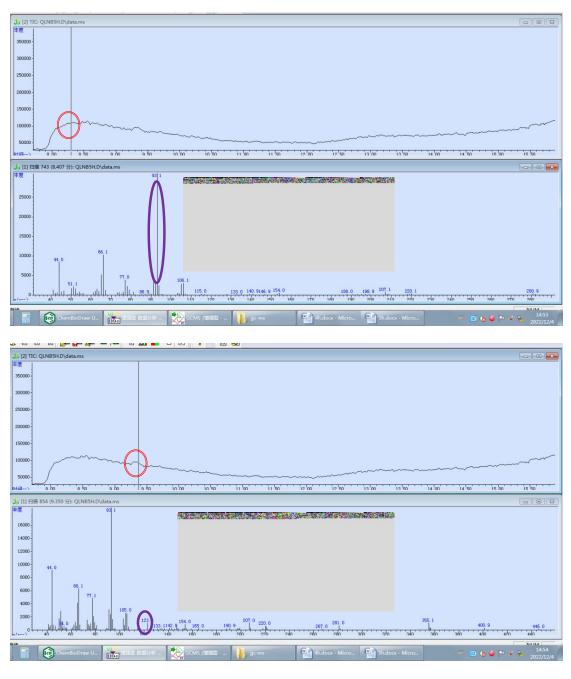

Figure S7. The GC-MS analysis of the product obtained through electrocatalytic reduction for 2 h at -0.2V revealed a gradual decrease in the peak intensity of NB.

Figure S8. The GC-MS analysis of the product obtained through electrocatalytic reduction for 3 h at -0.2V.

Figure S9. The GC-MS analysis of the product obtained through electrocatalytic reduction for 4 h at -0.2V.

Figure S10. The GC-MS analysis of the product obtained through electrocatalytic reduction for 5 h at -0.2V with a low feature peak for NB.

Table S2. Comparison of overall water splitting performance of reported bifunctional catalysts in 1 M KOH.

Catalysts	Voltage (10 mA cm ⁻²)	Ref.
CoFeP/P-rGO/NF	1.48	This work
Mo-CoP/CC	1.56	[6]
S:CoP@NF	1.62	[7]
CoP/C	1.56	[8]
CoP@NPMG	1.58	[9]
CoP@3D MXene	1.58	[10]
Co-P@PC-750	1.60	[11]
Er-doped CoP	1.58	[12]
Cr-FeNiP/NCN	1.5	[13]

References:

- [6] C. Guan, W. Xiao, H. Wu, et al. Hollow Mo-doped CoP nanoarrays for efficient overall water splitting. Nano Energy. 48 (2018) 73-80. https://doi.org/10.1016/j.nanoen.2018.03.034.
- [7] M. A. R. Anjum, M. S. Okyay, M. Kim, et al. Bifunctional sulfur-doped cobalt phosphide electrocatalyst outperforms all-noble-metal electrocatalysts in alkaline electrolyzer for overall water splitting. Nano Energy. 53 (2018) 286-295. https://doi.org/10.1016/j.nanoen.2018.08.064.
- [8] X. Li, X. Qian, Y. Xu, et al. Electrodeposited cobalt phosphides with hierarchical nanostructure on biomass carbon for bifunctional water splitting in alkaline solution. J. Alloy. Compd. 829 (2020) 154535. https://doi.org/10.1016/j.jallcom.2020.154535.
- [9] Y. Liu, Y. Zhu, J. Shen, et al. CoP nanoparticles anchored on N, P-dual-doped graphene-like carbon as a catalyst for water splitting in non-acidic media.

- Nanoscale. 10 (2018) 2603-2612. https://doi.org/10.1039/C7NR07274K.
- [10] L. Xiu, Z. Wang, M. Yu, et al. Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano. 12 (2018) 8017-8028. https://doi.org/10.1021/acsnano.8b02849.
- [11] J. Wu, D. Wang, S. Wan, et al. An Efficient Cobalt Phosphide Electrocatalyst Derived from Cobalt Phosphonate Complex for All-pH Hydrogen Evolution Reaction and Overall Water Splitting in Alkaline Solution. Small.16 (2020) 1900550. https://doi.org/10.1002/smll.201900550.
- [12] G. Zhang, B. Wang B, J. Bi, et al. Constructing ultrathin CoP nanomeshes by Erdoping for highly efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A. 7 (2019) 5769-5778. https://doi.org/10.1039/C9TA00530G.
- [13] Y. Wu, X. Tao, Y. Qing, et al. Cr-Doped FeNi-P Nanoparticles Encapsulated into N-Doped Carbon Nanotube as a Robust Bifunctional Catalyst for Efficient. Overall Water Splitting. Adv. Mater. 31 (2019) 1900178.