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Computational details

The binding energy of adsorbate , denoted as  was determined by the equation:𝑎𝑑 ∗ Δ𝐸
𝑎𝑑 ∗

Δ𝐸
𝑎𝑑 ∗ = 𝐸

𝐷𝐴𝐶𝑠 ∗ ‒  𝐸𝐷𝐴𝐶𝑠 ‒  𝐸𝑎𝑑

In this equation,  represents the total energy of DACs bound with the adsorbate , 
𝐸

𝐷𝐴𝐶𝑠 ∗ 𝑎𝑑 ∗

while  and  correspond to the individual energies of the DACs and , respectively. 𝐸𝐷𝐴𝐶𝑠 𝐸𝑎𝑑 𝑎𝑑
The free energy change for each reaction step was computed utilizing the computational 

hydrogen electrode (CHE) model, described as:
Δ𝐺 = Δ𝐸 +  Δ𝑍𝑃𝐸 ‒ 𝑇Δ𝑆 +  Δ𝐺𝑈 +  Δ𝐺𝑝𝐻

where  is the total energy variation derived from DFT calculations,  indicates the zero-Δ𝐸 Δ𝑍𝑃𝐸

point energy difference, and  accounts for the entropy change. The term  is evaluated using Δ𝑆 Δ𝐺𝑝𝐻

the formula , with  representing the Boltzmann constant and Δ𝐺𝑝𝐻 =  ‒ 𝑘𝐵𝑇𝑙𝑛[𝐻 + ] = 0.0592𝑝𝐻 𝑘𝐵

 the absolute temperature. Under standard reactions (electrode potential , temperature 𝑇 𝑈 = 0 𝑒𝑉

, pressure  and ), the free energy change simplifies to:𝑇 = 298.15 𝐾 𝑃 = 1 𝑏𝑎𝑟 𝑝𝐻 = 0

Δ𝐺 = Δ𝐸 +  Δ𝑍𝑃𝐸 ‒ 𝑇Δ𝑆

Consequently, the Gibbs free energy change for the adsorption of the adsorbate ,  𝑎𝑑 ∗ Δ𝐺
𝑎𝑑 ∗

can be elucidated as:

Δ𝐺
𝑎𝑑 ∗ = Δ𝐸

𝑎𝑑 ∗ +  Δ𝑍𝑃𝐸 ‒ 𝑇Δ𝑆

In the present study, the CO2RR proceeds through the steps outlined below:

(1) 𝑆𝑙𝑎𝑏 + 𝐶𝑂2(𝑔) + 2𝐻 + + 𝑒 ‒ →𝐶𝑂𝑂𝐻 ∗ + 𝐻 +        Δ𝐺1

(2) 𝐶𝑂𝑂𝐻 ∗ + 𝐻 + + 𝑒 ‒ →𝐶𝑂 ∗ + 𝐻2𝑂                            Δ𝐺2

(3) 𝐶𝑂 ∗ + 𝐻2𝑂→𝑆𝑙𝑎𝑏 + 𝐶𝑂(𝑔) + 𝐻2𝑂                       Δ𝐺3

Correspondingly, the limiting potential ( ) is given by:𝑈𝐿

𝑈𝐿 =‒
Δ𝐺𝑚𝑎𝑥

𝑒
=

‒ 𝑚𝑎𝑥⁡(Δ𝐺1,Δ𝐺2,Δ𝐺3)
𝑒

Moreover, the OER is characterized by the following sequential reactions:

(1) 𝑆𝑙𝑎𝑏 + 2𝐻2𝑂→𝑂𝐻 ∗ + 𝐻2𝑂 + 𝐻 + + 𝑒 ‒                                                     Δ𝐺1

(2) 𝑂𝐻 ∗ + 𝐻2𝑂 + 𝐻 + + 𝑒 ‒ →𝑂 ∗ + 𝐻2𝑂 + 2𝐻 + + 2𝑒 ‒                                Δ𝐺2

(3) 𝑂
∗ + 𝐻2𝑂 + 2𝐻 + + 2𝑒 ‒ →𝑂𝑂𝐻 ∗ + 3𝐻 + + 3𝑒 ‒                                      Δ𝐺3

(4) 𝑂𝑂𝐻 ∗ + 3𝐻 + + 3𝑒 ‒ →𝑆𝑙𝑎𝑏 + 𝑂2(𝑔) + 4𝐻 + + 4𝑒 ‒                               Δ𝐺4

From this, the overpotential ( ) can be deduced by calculating the greatest free energy 𝜂𝑂𝐸𝑅



change across these steps, expressed as:

𝜂𝑂𝐸𝑅 = [max (Δ𝐺1,Δ𝐺2,Δ𝐺3,Δ𝐺4)
𝑒] ‒ 1.23 𝑒𝑉

while HER proceeds through:

(1) 2𝐻 + + 2𝑒 ‒ → 𝐻 + +  𝑒 ‒ + 𝐻 ∗  

(2) 𝐻
+ +  𝑒 ‒ + 𝐻 ∗ →𝐻2 

To discern the thermodynamic and electrochemical stability of DACs, definitions for the 

binding energy ( ) and dissolution potential ( ) are as follows:Δ𝐸𝑏𝑖𝑛𝑑 𝑈𝑑𝑖𝑠𝑠

Δ𝐸𝑏𝑖𝑛𝑑 = 𝐸𝐷𝐴𝐶𝑠 ‒  𝐸𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 ‒  𝑛𝑀1𝐸𝑀1 ‒ 𝑛𝑀2𝐸𝑀2

𝑈𝑑𝑖𝑠𝑠 = 𝑈 0
𝑑𝑖𝑠𝑠(𝑏𝑢𝑙𝑘) ‒

𝐸𝑓𝑜𝑟𝑚

𝑛𝑒

Here,  symbolizes the total energy of DACs, whereas  indicates the energy of 𝐸𝐷𝐴𝐶𝑠 𝐸𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

substrate. The terms  and  signify the counts of metal 1 and metal 2 within DACs 𝑛𝑀1 𝑛𝑀2

respectively, with  in the case of DACs. The energies of single metal 1 ( ) and 𝑛𝑀1 = 𝑛𝑀2 = 1 𝐸𝑀1

metal 2 ( ) atom within their bulk configurations are designated as such.  represents 𝐸𝑀2 𝑈 0
𝑑𝑖𝑠𝑠(𝑏𝑢𝑙𝑘)

the standard dissolution potential of the bulk metal, while  is the number of electrons partaking 𝑛

in the dissolution process. Lastly, the formation energy ( ) of DACs can be computed by 𝐸𝑓𝑜𝑟𝑚

dividing the sum difference of the DACs energies, substrate energy, and the energies of the bulk 
metals by the total count of metals, which is also half of the binding energy:

𝐸𝑓𝑜𝑟𝑚 =
𝐸𝐷𝐴𝐶𝑠 ‒  𝐸𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 ‒  𝑛𝑀1𝐸𝑀1 ‒ 𝑛𝑀2𝐸𝑀2

𝑛𝑀1 + 𝑛𝑀2
=

Δ𝐸𝑏𝑖𝑛𝑑

2

Table S1 Summary of feature names and corresponding abbreviations in machine learning (ML) 
models applying for data analysis



Machine learning (ML) details

All ML algorithms are implemented using Python 3 in the Jupyter Notebook environment. For 
model training and evaluation, we use Optuna for hyperparameter optimization, XGBoost for 
regression modeling, and PyTorch for training the diffusion model. The data preprocessing steps 
are performed using pandas and scikit-learn libraries. The dataset is divided into training and test 
sets using a 7:3 split. Optuna are applied to optimize the regression models. For each trial, XGBoost 
Regressor is trained with randomly optimized hyperparameters, including learning rate, 
subsample rate, and the number of estimators etc.

The diffusion model is trained in parallel with the regression model. The model architecture is a 
simple fully connected neural network with ReLU activations, and it is trained using Adam 
optimizer to minimize the loss function. Generated samples from the diffusion model are used to 
augment the training set, with the final model being evaluated on both the original and augmented 
datasets.

Cross-validation is employed during hyperparameter optimization, and model performance is 
assessed using R2 on the test set. Additionally, t-SNE is utilized for visualizing the low-dimensional 
projection of the original and generated data to visualized the similarity of both type of data. 
Moreover, three different quantifying methods are applied for the evaluation of the generated 
data as follow:

MDD (Maximum Mean Discrepancy)
MMD measures the difference between the distributions of two datasets. It is defined as:

𝑀𝑀𝐷2 = ∥ 𝜇𝑋 ‒ 𝜇𝑌 ∥ 2

where  and  are the mean embeddings of the two datasets in a reproducing kernel Hilbert 𝜇𝑋 𝜇𝑌

space. MDD quantifies the global similarity between generated and real data, with a smaller MDD 
indicating higher distribution alignment.

Average Cosine Similarity (ACS)
ACS measures the directionality between two sets of vectors, defined as:

𝐴𝐶𝑆 =
1
𝑁

𝑁

∑
𝑖 = 1

𝐴𝑖.𝐵𝑖

∥ 𝐴𝑖 ∥∥ 𝐵𝑖 ∥

where  and  are the feature vectors of the generated and real data. ACS assesses the 𝐴𝑖 𝐵𝑖

directional similarity of the datasets, with higher values indicating closer alignment in feature 
space.

Nearest-Neighbor Consistency (NNC)
NNC evaluates local similarity by calculating the nearest neighbor distance:

𝑁𝑁𝐶 =
1
𝑁

𝑁

∑
𝑖 = 1

min
𝑗

∥ 𝑋𝑖 ‒ 𝑌𝑗 ∥

where  and  are points in the generated and real datasets. Smaller NNC values indicate that 𝑋𝑖 𝑌𝑗

the generated data points are closer to real data points, reflecting local consistency.



These metrics are used to quantify the reliability of the generated data, ensuring its global and 
local consistency with real data. Lower values in MDD, ACS, and NNC indicate that the generated 
data closely resemble the original data, confirming its reasonableness for use in ML tasks.
Table S1 Summary of feature names and corresponding abbreviations in ML models applying for 
data analysis

Atomic features Structure features

Atomic number (N) The number of carbons on the substrate (number of C)

Atomic mass (M) The number of nitrogens on the substrate (number of N)

Atomic radius (r) The ratio of carbons to nitrogens on the substrate (C:N)

Electronegativity () The distance between transition metal 1 and transition metal 2 
(M1-M2)

Electron affinity (EA) The distance between the central transition metals and the atoms 
of substrates surrounding them (e.g., M1-N1, N2-6)

First ionization energy (EI) The distance between the central transition metals and the atoms 
of adsorbates (e.g., H-M1, H-M2)

The number of d-electrons (θd) The distance of the adsorbate’s atoms (e.g., C-O, H-O)

The number of s-electrons (θs) -

The number of outermost electron (Ne) -



Table S2 Summary of details of features using for describing elements of double-atom catalysts 
(DACs)

Element N M R(Å)  EA (eV) EI (eV) θd θs Ne

Sc 21 44.96 1.64 1.36 0.19 6.56 1 2 3
Ti 22 47.87 1.47 1.54 0.09 6.83 2 2 4
V 23 50.94 1.35 1.63 0.53 6.75 3 2 5
Cr 24 52 1.25 1.66 0.68 6.77 5 1 6
Mn 25 54.94 1.37 1.55 0.97 7.43 5 2 7
Fe 26 55.85 1.26 1.83 0.15 7.90 6 2 8
Co 27 58.93 1.25 1.88 0.66 7.88 7 2 9
Ni 28 58.69 1.25 1.91 1.16 7.64 8 2 10
Cu 29 63.55 1.28 1.9 1.24 7.73 10 1 11
Zn 30 65.39 1.37 1.65 0.09 9.39 10 2 12
Y 39 88.91 1.82 1.22 0.31 6.22 1 2 3
Zr 40 91.22 1.6 1.33 0.43 6.63 2 2 4
Nb 41 92.91 1.43 1.6 0.89 6.76 4 1 5
Mo 42 95.96 1.4 2.16 0.75 7.09 5 1 6
Ru 44 101.07 1.34 2.2 1.05 7.36 7 1 8
Rh 45 102.91 1.34 2.28 1.14 7.46 8 1 9
Pd 46 106.42 1.37 2.2 0.54 8.34 10 0 10
Ag 47 107.87 1.44 1.93 1.30 7.58 10 1 11
Cd 48 112.41 1.49 1.69 0.27 8.99 10 2 12
Hf 72 178.49 1.56 1.3 0.63 6.83 2 2 4
Ta 73 180.95 1.43 1.5 0.32 7.55 3 2 5
W 74 183.85 1.37 2.36 0.82 7.86 4 2 6
Re 75 186.21 1.37 1.9 0.38 7.89 5 2 7
Os 76 190.23 1.35 2.2 1.08 8.7 6 2 8
Ir 77 192.22 1.36 2.2 1.56 9.1 7 2 9
Pt 78 195.08 1.39 2.28 2.13 9 9 1 10
Au 79 196.97 1.44 2.54 2.31 9.23 10 1 11



Table S3 The details (performance and hyperparameters) of each ML model for data analysis. All 
models were based on Random Forests algorithm, while all hyperparameters were obtained by 
10-fold cross validation (CV) through Grid Search method. Hyperparameters not mentioned were 
kept at their default values

ML models Hyperparameters Accuracy Grid Search range
Δ𝐸𝑏𝑖𝑛𝑑 n_estimators = 25

max_depth = 5
max_features = 0.7

R2: 0.92

Δ𝐺
𝐶𝑂 ∗

n_estimators = 5
max_depth = 3
max_features = 1

R2: 0.83

Δ𝐺
𝑂𝐻 ∗

n_estimators = 5
max_depth = 7
max_features = 1

R2: 0.80

Δ𝐺
𝐻 ∗

n_estimators = 10
max_depth = 7
max_features = 1

R2: 0.88

n_estimators = [5,10,15, 20,25, 50]
max_depth = [3,5,7]
max_features = [0.6, 0.7, 1]



Table S4 Bader charge analysis ( ) of key atoms (transition metal 1 and 2, adsorbates) on DACs 𝑒

discussed in this manuscript

Adsorbate Bader charge transfer 𝑒

CO
FeSc

CN

RhCu

CN

VZr

CN

PtNi

C2N

PtPt

C2N

WMo

C2N

Fe -0.542 Rh -1.11 V -1.23 Pt -0.498 Pt -0.864 W -1.20

Sc -1.37 Cu -0.225 Zr -1.45 Ni -0.647 Pt -0.918 Mo -1.05

C -0.533 C -0.676 C -0.174 C -0.644 C -0.371 C -0.330

O +0.967 O +0.950 O +0.978 O +0.899 O +0.712 O +0.684

NbZr

g-C3N4

NiSc

g-C3N4

NiW

g-C3N4

PtMn

N-C3N4

RhZn

N-C3N4

VTi

N-C3N4

Nb -1.12 Ni -0.393 Ni -0.229 Pt -0.195 Rh -0.296 V -1.01

Zr -2.04 Sc -1.58 W -1.57 Mn -0.947 Zn -0.705 Ti -1.25

C +0.290 C -0.551 C -0.283 C -0.649 C -0.548 C -0.262

O +0.987 O +0.857 O +0.833 O +0.866 O +0.750 O +0.925

H
CoFe

CN

CoPt

CN

CoW

CN

CoFe

C2N

CoNi

C2N

CoPt

C2N

Co -0.788 Co -0.863 Co -0.265 Co -0.801 Co -0.807 Co -0.921

Fe -0.997 Pt -0.474 W -1.94 Fe -1.04 Ni -0.753 Pt -0.973

H +0.370 H +0.639 H +0.589 H +0.380 H +0.337 H +0.608

FeMn

g-C3N4

MnMn

g-C3N4

NiMn

g-C3N4

NiCo

N-C3N4

NiFe

N-C3N4

NiMn

N-C3N4

Fe -0.852 Mn -0.892 Ni -0.390 Ni -0.618 Ni -0.505 Ni -0.571

Mn -1.04 Mn -0.897 Mn -0.997 Co -0.953 Fe -1.05 Mn -1.17

H +0.633 H +0.545 H +0.570 H +0.486 H +0.471 H +0.512

OH
CoCo

N-C3N4

CoPt

N-C3N4

NiFe

N-C3N4

NiMn

N-C3N4

NiNi

N-C3N4

WFe

N-C3N4

Co -0.0859 Co +0.623 Ni +0.00524 Ni +0.532 Ni -0.109 W -1.73

Co -0.848 e Pt -0.258 Fe -1.10 Mn -1.11 Ni -0.559 Fe -0.724

O +0.792 O +0.0847 O +0.719 O +0.346 O +1.07 O +1.07

H -0.446 H +0.104 H -0.314 H -0.0352 H -0.566 H -0.393



Table S5 Summary of d-bands center ( ) of DACs discussed in this manuscript. All  were directly 𝜀𝑑 𝜀𝑑

obtained from VASPKIT package (standard edition 1.4.1)1

Adsorbate  (eV) of DACs𝜀𝑑

CO
FeSc

CN

RhCu

CN

VZr

CN

PtNi

C2N

PtPt

C2N

WMo

C2N

Fe -0.612 Rh -1.64 V 0.797 Pt -1.96 Pt -2.83 W 0.329

Sc 1.89 Cu -2.36 Zr 1.86 Ni -1.33 Pt -2.80 Mo 0.125

Total 0.563 Total -2.02 Total 1.26 Total -1.64 Total -2.81 Total 0.221

NbZr

g-C3N4

NiSc

g-C3N4

NiW

g-C3N4

PtMn

N-C3N4

RhZn

N-C3N4

VTi_

N-C3N4

Nb 0.823 Ni -2.04 Ni -1.31 Pt -3.41 Rh -1.99 V 0.807

Zr 1.53 Sc 1.16 W 0.140 Mn -0.983 Zn -6.58 Ti 0.861

Total 1.18 Total -0.531 Total -0.675 Total -2.17 Total -4.33 Total 0.838

H
CoFe

CN

CoPt

CN

CoW

CN

CoFe

C2N

CoNi

C2N

CoPt

C2N

Co -0.897 Co -0.688 Co -1.04 Co -1.03 Co -0.791 Co -0.756

Fe -1.03 Pt -2.24 W 0.384 Fe -1.10 Ni -1.40 Pt -2.35

Total -0.964 Total -1.43 Total -0.420 Total -1.07 Total -1.10 Total -1.52

FeMn

g-C3N4

MnMn

g-C3N4

NiMn

g-C3N4

NiCo

N-C3N4

NiFe

N-C3N4

NiMn

N-C3N4

Fe -0.774 Mn -0.376 Ni -1.40 Ni -1.97 Ni -1.99 Ni -2.06

Mn -0.396 Mn -0.477 Mn -0.782 Co -1.10 Fe -1.34 Mn -0.650

Total -0.586 Total -0.427 Total -1.09 Total -1.55 Total -1.68 Total -1.37

OH
CoCo

N-C3N4

CoPt

N-C3N4

NiFe

N-C3N4

NiMn

N-C3N4

NiNi

N-C3N4

WFe

N-C3N4

Co -1.03 Co -1.52 Ni -2.12 Ni -2.11 Ni -1.67 W 0.133

Co -1.15 Pt -1.61 Fe -1.38 Mn -0.472 Ni -1.23 Fe -0.797

Total -1.09 Total -1.56 Total -1.76 Total -1.31 Total -1.45 Total -0.398



Table S6 Details of ML models for data prediction using Smooth Overlap of Atomic Positions (SOAP) 
or Coulomb Matrix (CM) as descriptors for DACs. Hyperparameters were optimized using 10-fold 
CV via the Optuna library

Prediction 
models

Accuracy Optuna hyperparameters tuning range

Δ𝐸𝑏𝑖𝑛𝑑 R2: 0.863 (CM)
R2: 0.976 (SOAP)

𝑈 𝑀𝐼
𝑑𝑖𝑠𝑠 R2: 0.898 (CM)

R2: 0.993 (SOAP)

𝑈 𝑀2
𝑑𝑖𝑠𝑠 R2: 0.851 (CM)

R2: 0.987 (SOAP)

Δ𝐺
𝐻 ∗

R2: 0.796 (CM)
R2: 0.943 (SOAP)

𝑈𝐿 R2: 0.770 (CM)
R2: 0.928 (SOAP)

𝜂𝑂𝐸𝑅 R2: 0.772 (CM)
R2: 0.883 (SOAP)

params = {
"n_estimators": trial.suggest_int("n_estimators", 100, 500),
"max_depth": trial.suggest_int("max_depth", 3, 7),
"learning_rate": trial.suggest_float("learning_rate", 0.005, 0.2, log=True),
"subsample": trial.suggest_float("subsample", 0.6, 1.0),
"colsample_bytree": trial.suggest_float("colsample_bytree", 0.6, 1.0),
"reg_alpha": trial.suggest_float("reg_alpha", 1e-5, 10.0, log=True),
"reg_lambda": trial.suggest_float("reg_lambda", 1e-5, 10.0, log=True),
}



Table S7 Model evaluation metrics before and after using the generative model

Model R2 after using generative 
model (test set)

R2 before using generative 
model (test set)

MDD ACS NNC

Δ𝐺
𝐻 ∗

0.943 0.872 0.380 0.917 0.335

𝑈𝐿 0.928 0.861 0.300 0.908 0.274
𝜂𝑂𝐸𝑅 0.883 0.840 0.258 0.888 0.263



Table S8 Comparison of theoretical and predicted values for catalytic performance of different 
materials

Property/System DFT calculation / 
literature value

ML model 
predicted value

Reference

 of NiZr_CN in HER
Δ𝐺

𝐻 ∗
-0.35 eV -0.34 eV This work

 of MnMn_g-C3N4 in HER
Δ𝐺

𝐻 ∗
-0.86 eV -0.83 eV This work

 of FeMo@C2N in CO2RR𝑈𝐿 -1.8 eVa -1.6 eV 10.1039/D4CP00213J

 of NiCu@C2N in OER𝜂𝑂𝐸𝑅 0.42 eV 0.45 eV

 of Cu2@C2N in OER𝜂𝑂𝐸𝑅 0.38 eV 0.40 eV
10.1007/s42823-
024-00693-6

aAlthough this work only reports the binding energy of CO ( ), we have thoroughly ∆𝐺𝑎𝑑𝑠(𝐶𝑂)

discussed in the main text that when the adsorption strength of CO is excessively high 
(typically below about 1.05 eV), CO desorption is most likely to become the PDS in CO2RR. In 

such cases,  serves as a reliable descriptor for the  in CO2RR. Therefore, we adopt ∆𝐺𝑎𝑑𝑠(𝐶𝑂) 𝑈𝐿

the reported  values from the literature as a surrogate for  in the corresponding ∆𝐺𝑎𝑑𝑠(𝐶𝑂) 𝑈𝐿

catalytic systems.



Table S9 Summary of the designed scoring system used to evaluate the four substrates in this 
studya

Substrate_name Count_meet_standard Proportion_meet_standard Average_Score

CN 4 0.154 6.08
C2N 5 0.200 6.15
g-C3N4 4 0.160 6.37
N-C3N4 10 0.244 6.14
aStatistical data are based on ML model predictions for the test and training sets. The stability criterion is defined as 

 and . Since the data from each substrate vary, we also calculated the proportion of data that meet Δ𝐸𝑏𝑖𝑛𝑑 < 0 𝑒𝑣 𝑈𝑑𝑖𝑠𝑠 > 0 𝑒𝑉

the stability standard, shown in the 'Proportion_meet_standard' column, which indicates the likelihood of each substrate 
satisfying the stability criterion in an electrochemical environment. Additionally, we assigned a score based on the specific 

values of three energies ( ,  for metals 1 and 2). The score is on a 10-point scale, with more negative  and Δ𝐸𝑏𝑖𝑛𝑑 𝑈𝑑𝑖𝑠𝑠 Δ𝐸𝑏𝑖𝑛𝑑

more positive  leading to a higher score. However, this scoring method is influenced by the data values and is intended 𝑈𝑑𝑖𝑠𝑠

for reference only. Therefore, the 'Proportion_meet_standard' column is the primary criterion for recommendation. From 
this table, we observe that N-C3N4 has both the highest count ('Count_meet_standard') and proportion 
('Proportion_meet_standard') of stable configurations, making it the most stable substrate for recommendation.

1.  
𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛_𝑚𝑒𝑒𝑡_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = 𝐶𝑜𝑢𝑛𝑡_𝑚𝑒𝑒𝑡_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑇𝑜𝑡𝑎𝑙_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡𝑠

'Count_meet_dandard' represents the number of substrates that meet the stability criteria, while 
'Total_prediction_count' represents the total number of predicted substrates.

2.  
𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝑆𝑐𝑜𝑟𝑒 = (Δ𝐸𝑏𝑖𝑛𝑑 + 𝑈 𝑀𝐼

𝑑𝑖𝑠𝑠 + 𝑈 𝑀𝐼
𝑑𝑖𝑠𝑠)

3 

Before substituting the values into the formula for calculation, all three parameters are converted to a 10-point scale.

 



Table S10 Summary of formulas generated by High-Performance Symbolic Regression in Python 
and Julia (PySR) along with their performance metricsa

Adsorption 
energy

Accuracy Formula generated by PySR

Δ𝐺
𝐻 ∗

R2: 0.870 (((0.8742166 ^ M2-N4) ^ (((cos((((N2 + (M2-N4 - 1.710808)) - sin(El1)) * 
M2-N6) ^ 0.8572206) - ((M1-N2 - ((M1-N1 -0.23210852) ^ M2-N6)) * C:N)) 
* M1-N2) + C:N)) - sin(θs2 * (sin(M2-N5) ^ M1-N2))) / sin(C:N / 1.2761757)

R2: 0.739 Simple version: sin((sin((number of C +3.701664) + ((EA1 - sin(M2)) * -
0.16440153)) / C:N) * 1.961267) - sin(θs2)

Δ𝐺
𝐶𝑂 ∗

R2: 0.924 (sin((C-M2 - (EA2 - 0.21993148)) * (min(min(M1-N2, ((M1-N2 + ((((C-M2 - 
0.65825975) - 1.6706436) * x2) * EA2)) / (M2-N6 -θs1)) / x2), sin(M2-N6)) 
+ (max(min(0.8547337, O-M1 - 1.6706436) - EA2, sin(sin(M1) - C-O)) -
θs2))) * C-O) / 0.79802406

R2: 0.699 Simple version: cos(exp(sin(exp(cos(El1 * (El2 / 0.91185826)))) ^ (θs2 + 
cos(x1 ^θd2))) + El2) / cos(cos((θs2 / 0.0140918335) * El1))

Δ𝐺
𝑂𝐻 ∗

R2: 0.973 ((sin((Ne2 - ((M2-N4 - M1-N3) - (cos(sin(N2) / sin(H-M2)) / 0.7027012))) * 
-0.45550263) - sin(sin(1.5241305 * sin(sin(M2-N6 * M2-N5) / (M2-N5 ^ 
cos(sin(M1-N3) +θd1)))) + M2-N6)) + 0.20597531) / (0.9472296 ^ (M1-N3 
^ EA1))

R2: 0.863 Simple version: cos(El2 ^ 1.1826223) * (0.8775042 + sin(El2 ^ 1.7333285))
aIn simple terms, the "simple version" excludes all structural features requiring DFT optimization, relying 
instead on element data from public databases and other non-DFT features to construct the formulas. By 
sacrificing some model accuracy, the aim is to highlight PySR's ability to construct highly interpretable 
formulas and predict adsorption energies using basic features.

Key hyperparameters of PySR:
niterations=200,
maxsize=25 for simple version while maxsize=50 for other models,
populations=200,
loss="loss(x, y) = (x - y)^2"
binary_operators=["+", "-", "*", "/", "^"]
unary_operators=["sin", "cos", "exp"] for other models while binary_operators=["+", "-", "*", "/", "^", 

"max", "min"] for  for better fitting result.Δ𝐺𝑐𝑜 ∗



Fig. S1 Current trends in ML-led research of atomic catalysts (ACs): Panels (a) to (c) depict a 
selection of recent investigations into DACs facilitated by ML. Panel (a) focuses on studies using a 
single type of substrate, whereas panels (b) and (c) examine DACs on N-doped graphene substrates 
that undergo minor variations (distinct doping configurations) around the central double transition 
metals. Panels (d) and (e) illustrate research exploring single atom catalysts (SACs) utilizing ML, 
specifically examining SACs on MoS2 substrates with varying B doping levels, as well as graphene 
doped with different elements (C, N, O, P, or S), respectively. Notably, the substrate structures in 
all illustrated examples remain largely unchanged except the atoms around the central transition 
metals. This figure has been adapted from the original illustrations cited as references 2 to 6 (a-e, 
respectively).



Fig. S2 Heatmaps of binding energy ( ) and dissolution potential ( ) across diverse DACs: Δ𝐸𝑏𝑖𝑛𝑑 𝑈𝑑𝑖𝑠𝑠

This figure displays four distinct heatmaps representing the calculated  and  for DACs Δ𝐸𝑏𝑖𝑛𝑑 𝑈𝑑𝑖𝑠𝑠

on different substrate geometries: CN (top left), C2N (top right), g-C3N4 (bottom left), and N-C3N4 
(bottom right). The heatmaps utilize a color gradient scale where red denotes positive energy 

differences and navy blue indicates negative ones. A negative  suggests that the metal bind Δ𝐸𝑏𝑖𝑛𝑑

stably to the substrate, while a positive  denotes a metal's resistance to dissolution during 𝑈𝑑𝑖𝑠𝑠

electrochemical reactions, both critical factors for the stability and longevity of DAC catalysts. The 
N-C3N4 substrate geometry, in particular, shows remarkable potential for steadfast dual-metal 
atom anchoring. Furthermore, a majority of the DACs with N-C3N4 substrate assessed display a 

positive , reflecting their considerable electrochemical sturdiness.𝑈𝑑𝑖𝑠𝑠



Fig. S3 Interrelational study of  and C-O bond length ( ) in DACs: This figure portrays a |𝑒| 𝑙𝐶 ‒ 𝑂

correlation analysis where the data points, color-coded as red, green, blue, and orange, represent 
DACs with the substrate geometries CN, C2N, g-C3N4, and N-C3N4, respectively. These data points 

reflect the correlated behavior between both essential catalytic features (  and ), offering |𝑒| 𝑙𝐶 ‒ 𝑂

insights into their roles within the catalytic efficiency and mechanisms.



Fig. S4 Projected partial density of states (PDOS) for CO2RR on DACs catalysts: This series depicts 

the PDOS of 12 DACs optimized for facilitating the CO2RR. The Fermi level ( ) is delineated by a 𝐸𝐹

red dashed line across each graph. Annotations in the upper right corners communicate the 
specific transition metals constituent of the DACs. Color-coding is used to differentiate the PDOS 
contributions: transition metal 1 (M1) is represented in yellow, transition metal 2 (M2) in orange, 
and the total d-orbital is conveyed in cyan. Groupings (a,e,i), (b,f,j), (c,g,k), and (d,h,l) correspond 
to DACs with underlying CN, C2N, g-C3N4, and N-C3N4 substrate geometries, respectively.



Fig. S5 The Overview of correlation analyses of , , and , with a color bar representing 𝜀𝑑 |𝑒| Δ𝐺
𝐶𝑂 ∗

. The lower right corner provides a front view of the image.
Δ𝐺

𝐶𝑂 ∗



Fig. S6 Depiction of CO adsorption modes on optimized DACs structures: This figure delineates the 
optimized geometries of various DACs with CO adsorbed. Panels (a) and (d) feature the FeSc-CN 
catalyst, while panels (b) and (e) illustrate the NbZr_g-C3N4 catalyst, and both DACs are akin to a 
side-on adsorption mode for CO. Panels (c) and (f) present the RhRh_CN catalyst, which adopts an 
end-on adsorption configuration but with C as the terminal adsorption point. This last 
configuration is identified as the predominant CO adsorption mode (end-on with C as the terminal 
binding site) for the majority of the DACs investigated within this study.



Fig. S7 Correlation of electronic descriptors and feature impact analysis of H adsorption on DACs: 

(a) & (b) plot the correlation between  and  as well as the Gibbs free energy change for |𝑒| 𝜀𝑑

hydrogen adsorption ( ) and , respectively. (c) presents the relative importance of various 
Δ𝐺

𝐻 ∗ 𝜀𝑑

features as determined by SHAP (Shapley Additive exPlanations) values in the ML model that 

assesses the  values of DACs. (d-o) display the PDOS of the optimized structures of 12 DACs 
Δ𝐺

𝐻 ∗

that serve as hydrogen evolution reaction (HER) catalysts. The red dashed line marks , with 𝐸𝐹

labels in the upper right corners indicating the associated transition metals (M1 and M2). The PDOS 
contributions of M1, M2, and the total d-orbital are colored yellow, orange, and cyan, respectively. 
Figures (d,h,l), (e,i,m), (f,j,n), and (g,k,o) represent DACs with CN, C2N, g-C3N4, and N-C3N4 substrate 
geometries, correspondingly.

Fig. S8 Correlation heatmap and SHAP value analysis for CO adsorption on DACs: (a) Heatmap of 
Pearson's correlation coefficient ( ) displaying the interdependence of full feature set: The range 𝑝

of colors from orange to dark purple indicates the values of , with the most intense hues at both 𝑝

endpoints of color bar signifying larger absolute values of  and notable correlation between 𝑝

paired features. (b) Bar chart depicting the relative importance of features according to SHAP 
values within the ML model: This visualization prioritizes key descriptors influencing the Gibbs free 

energy change for CO adsorption ( ) values of DACs, as identified by SHAP value assessment, 
Δ𝐺

𝐶𝑂 ∗

establishing a hierarchy of feature significance in CO adsorption behavior.



Fig. S9 Bar plot of SHAP values depicting feature importance for  of DACs: This bar plot Δ𝐸𝑏𝑖𝑛𝑑

visualizes the relative importance of the features, as determined by SHAP values, within the ML 

model developed to analyze  of DACs. Each bar represents the magnitude of impact that a Δ𝐸𝑏𝑖𝑛𝑑

particular feature contributes to the ML model's output, providing insights into the most 
influential factors for DAC stability.



Fig. S10 Optimized configuration for MoFe DAC on N-C3N4 substrate: This figure illustrates the 
optimized molecular structure of the MoFe DAC interfaced with N-C3N4 substrate geometries. 
Quantitatively, the Fe-O bond measures 1.80 Å, which is notably shorter than the Mo-O bond at 
3.25 Å. Such disparity suggests Fe as the predominant metal influence in our initial methodology, 
therefore, the d-electron count of MoFe N-C3N4 DAC was apportioned as 6, paralleled d-electron 
count of Fe. Subsequently, we refine our approach by incorporating bond lengths as weights to 
the respective d-electron counts, thereby deriving a weighted d-electron average, ϕ, described by 
the equation:

ф =
𝑑1𝑙1 + 𝑑2𝑙2

𝑙1 + 𝑙2

where  and  are the d-electron counts for transition metals 1 (M1) and 2 (M1), while  and 𝑑1 𝑑2 𝑙1

 are the respective bond lengths of M1-O and M2-O. This refined quantification allows for a more 𝑙2

precise tally of electron quantities within the bimetallic system of DACs.



Fig. S11 SHAP values' insight on the Gibbs free energy change for OH adsorption ( ) in DACs: 
Δ𝐺

𝑂𝐻 ∗

The bar chart presents the SHAP value-derived relative importance of various features within the 

ML model employed to analyze  for the oxygen evolution reaction (OER) on DACs. This 
Δ𝐺

𝑂𝐻 ∗

visualization elucidates the impact of individual features on the model's predictions, highlighting 
those that significantly influence OH adsorption during OER process.



Fig. S12 Statistical correlation of ϕ with key parameters related to OER process in DACs: This figure 

delineates the statistical association of the parameter ϕ with , , and  for various DACs. 
Δ𝐺

𝑂𝐻 ∗ 𝜀𝑑 |𝑒|

Acknowledged studies7,8 have previously confirmed the intrinsic connection of these parameters (

,  and ) with the d-electron count in transition metals. The depicted correlations affirm 
Δ𝐺

𝑂𝐻 ∗ 𝜀𝑑 |𝑒|

that ϕ serves as a reasonable statistical approach for determining the effective d-electron numbers 
in complex systems featuring dual transition metals.



Fig. S13 Comparative free energy diagrams of OER for various DACs: Panels (a)-(d) exhibit the 
relative free energy profiles for the OER catalyzed by different DACs with N-C3N4 substrate. The 
diagrams present the free energy changes at each step of the OER process, facilitating an 
assessment of the catalytic efficiency and potential energy barriers across a range of DACs.



Fig. S14 Fitting results of PySR, with the corresponding key intermediate adsorption energy shown 
in the upper left corner. Without the use of structural descriptors, relying solely on elemental 
descriptors for fitting (simple version below) leads to varying degrees of accuracy deterioration.



Fig. S15 (a) Flowchart of the diffusion model, designed to learn from the training set of DFT data 
and generate corresponding data to expand the dataset, ensuring effective model training. (b)-(d) 
t-SNE projections of the generated data (red dots) and raw data (blue dots), which are closely 
aligned, demonstrating the model's effective data generation. 



Fig. S16 Temperature (left) and energy (right) fluctuations during AIMD simulations performed at 
400 K for 10 ps with a time step of 2 fs under the NVT ensemble for: (a) CuPd_N-C3N4, (b) PtZn_N-
C3N4, (c) CuNi_ N-C3N4, (d) PtMn_N-C3N4, and (e) VTi_N-C3N4.



Fig. S17 Comparative analysis of computational time for molecular property predictions using 
density functional theory (DFT), traditional ML, and full process ML frameworks: This bar chart 
contrasts the computational time required for predicting molecular properties of all data through 
DFT calculations, a traditional ML framework, and an advanced full process ML framework. DFT 
calculations were executed on the Vienna Ab initio Simulation Package (VASP)9 with an 88-core 
CPU, consuming approximately 10.6 million CPU-seconds. In stark contrast, the ML framework 
requires merely 47 minutes on a consumer-grade CPU, demonstrating efficiency that surpasses 
DFT calculations by over 3750 times. While the traditional ML framework and the full process ML 
framework exhibit comparable computational times, the latter significantly reduces manual effort 
and enhances prediction accuracy, indicating a substantial advancement in the field of 
computational material science.
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