Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Journal of Materials Chemistry A

Supporting Information

{Fe²⁺-Imidazole} Catalyst Grafted on Magnetic {Fe@Graphitized C} Nanoparticles: A Robust Hybrid-Catalyst for H₂ Production from HCOOH

Christos Gkatziouras^[a], Christos Dimitriou^[b], Szymon Smykała^[c], Yiannis

Deligiannakis^[b]* and Maria Louloudi^[a]*

^[a] Laboratory of Biomimetic Catalysis and Hybrid Materials, Department of Chemistry, University of Ioannina, GR45110 Ioannina, Greece

^[b] Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina (UOI), Ioannina, 45110, Greece

^[c] Institute of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego St, Gliwice 44-100, Poland

*Corresponding author email: <u>mlouloud@uoi.gr</u>

S1. Sample preparation

Powder X-ray diffraction: Data were acquired over a 2θ range of 10° to 80° . The crystallite size was determined using the Scherrer equation (Eq. S1)⁵³

$$d_{\rm XRD} = \frac{K\lambda}{\rm FWHM \times \cos\theta}$$
(Eq.S1)

Where, K = 0.9, $\lambda = 1.5418$ Å and FWHM is the full width at half-maximum of the XRD peaks. The XRD patterns were acquired in the standard Bragg-Brentano geometry in step scanning mode with a step size of 0.003° and a scan speed of 0.7 seconds per step.

 N_2 porosimetry: The SSA equivalent diameter d_{BET} of the particles was calculated by the Eq. S2,

$$d_{\rm BET} = \frac{6000}{\rm SSA} \times \rho_{\rm Fe@GC}$$
(Eq.S2)

where $\rho_{Fe@GC}$ was calculated based on the percentages of the main crystallographic phases derived from XRD data, i.e. magnetite (${}^{\rho_{Fe}{}_{3}O_{4}} = 5.17 \text{ g/cm}^{3}$), wustite (${}^{\rho_{Fe}O} = 5.70 \text{ g/cm}^{3}$), cementite (${}^{\rho_{Fe}{}_{3}C} = 7.6 \text{ g/cm}^{3}$), martensite (${}^{\rho_{C}}_{0.2}{}^{Fe}{}_{1.8} = 7.7 \text{ g/cm}^{3}$) and metallic Fe (${}^{\rho_{Fe}} = 7.87 \text{ g/cm}^{3}$).

Thermogravimetric analysis (TG-TDA): To assess the efficiency of our catalytic system, the Fe^{2+} loading was estimated based on the incorporation of the organic ligand imidazole. Considering the theoretical stoichiometric ratio of Fe^{2+} to imidazole as 1:2, the organic ligand loading was determined to be 0.36 mmol per gram of Fe@C-graf. Consequently, the corresponding surficial iron loading was calculated to be 0.18 mmol per gram of catalyst.

Transmission Electron Microscopy (TEM): Sample preparation consisted of sonicating powdered samples in ethanol and depositing the homogeneous suspension in the form of a single droplet on a TEM copper grid covered by a lacey carbon film. Before the observations, to remove any organic contamination, samples were treated for 3 s in argon plasma using a Fischione Instruments 1020 Plasma Cleaner.

Table 1 presents phase composition and crystallite size data obtained from X-ray diffraction (XRD) analysis, while specific surface area (SSA) and pore volume were determined via BET analysis. The particle diameter d_{BET} was calculated using Eq. S2.

Figure S1. Thermogravimetric analysis of (a) Fe@C@-graf, (b) Fe@C-calc and (c) Fe@C-aftercat.

(a)

Crystallographic phases:

- **Wustite FeO**
- Magnetite Fe₃O₄
- Martensite C_{0.14}Fe_{1.86}
- Iron Carbide Fe₇C₃
- Austenite Fe_{0.94}C_{0.06}
- **Cohenite Fe₃C**

(C)

Figure S2. XRD patterns of (a) Fe@C-prist, (b), Fe@C-calc, (c) Fe@C-graf and (d) Fe@C-aftercat (12 uses) analyzed using EVA software, identifying the corresponding XRD crystallographic phases.

Figure S3. N₂ adsorption-desorption isotherms of hybrid magnetic {Core@Shell Fe@Carbon}@{Fe²⁺-Imidazole} catalytic materials: (a) Fe@C-prist, (b), Fe@C-calc, (c) Fe@C-graf and (d) Fe@C-aftercat (12 uses).

Figure S4. Raman spectrum of Fe@C-calc material showing the oxidation phases of wustite, specifically hematite and magnetite.

a) Fe@C-prist

Cut out of map (resolution: 960×600 points)

Table	S1. E	DS an	alvsis	for	Fe@	C-1	orist.
1 abic	DI D		aryond	101	1 0(0	\sim	JI 15t.

Element Number	Element Symbol	Element Name	Atomic Conc. (%)	Weight Conc. (%)
6	С	Carbon	61.05	44.80
8	0	Oxygen	31.92	31.20
26	Fe	Iron	7.03	24.00

b) Fe@C-calc

Cut out of map (resolution: 960×600 points)

 Table S2. EDS analysis for Fe@C-calc.

Element Number	Element Symbol	Element Name	Atomic Conc. (%)	Weight Conc. (%)
6	С	Carbon	47.98	30.20
8	0	Oxygen	39.48	33.10
26	Fe	Iron	12.54	36.70

c) <u>Fe@C-graf ([{Fe²⁺-imidazole}@{Fe@GC}])</u>

Cut out of map (resolution: 960×600 points)

Table S3. EDS analysis for Fe@C-graf ([$\{Fe^{2+} - imidazole\}@\{Fe@GC\}$]).

Element Number	Element Symbol	Element Name	Atomic Conc. (%)	Weight Conc. (%)
6	С	Carbon	54.767	37.50
7	Ν	Nitrogen	2.51	1.50
8	0	Oxygen	31.36	28.50
14	Si	Silicon	1.003	0.90
26	Fe	Iron	10.36	31.60

d) Fe@C-aftercat

Cut out of map (resolution: 960×600 points)

 Table S4. EDS analysis for Fe@C-aftercat (12 uses).

Element Number	Element Symbol	Element Name	Atomic Conc. (%)	Weight Conc. (%)
6	С	Carbon	54.284	34.90
7	Ν	Nitrogen	1.27	1.18
8	0	Oxygen	30.04	27.35
15	Р	Phosphorus	2.516	4.61
26	Fe	Iron	11.89	31.96

Figure S5. EDS analysis for hybrid magnetic {Core@Shell Fe@Carbon}@{Fe²⁺-Imidazole} catalytic materials: (a) Fe@C-prist (Table S1), (b), Fe@C-calc (Table S2), (c) Fe@C-graf (Table S3)and (d) Fe@C-aftercat (12 uses) (Table S4).

Figure 6. EDS/EDX spectra obtained from TEM/STEM for (a) Fe@C-prist, (b) Fe@C-calc, (c) Fe@C-graf and (d) Fe@C-aftercat (12 uses).

Figure S7. Catalytic reaction rate of $\{Fe^{2+}-imidazole\}$ (Fe@GC) for each use.

Figure S8. GC spectrum during the catalytic reaction for the $[{Fe^{2+}-imidazole/PP_3}]@{Fe@GC}]$ catalytic system.