Electronic Supplementary Information

Nickel-mediated dynamic interfaces of dual spillover pathways in

Mo₂C/Ni/Fe₃O₄ for water splitting

Xu Yue^{ab}, Lei Zheng^c, Shengli Zhang^c, Yeheng Zhang^{ab}, Zhiheng Xu^{de}, Xiaobin Tang^{de}, Haijun Tao^f, Yuqiao Wang^{*ab}

^a Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, China

^b Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China

^c MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China

^d Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

^e Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautics, Ministry of Industry and Information Technology, Nanjing 211106, China

^f Jiangsu Key Laboratory of Materials and Technology for Energy Conversion, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China

* Corresponding author

E-mail: yqwang@seu.edu.cn (Y. Wang)

1. Computational Methodology

Spin-polarized density functional theory (DFT) calculations were conducted using the Vienna Ab initio Simulation Package (VASP) employing the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) for exchange-correlation interactions. Core-electron interactions were treated through the projector augmented wave (PAW) method with a plane-wave basis set truncated at 400 eV kinetic energy. Structural optimizations proceeded via conjugate gradient minimization until reaching convergence thresholds of 10^{-4} eV for total energy and $0.05 \text{ eV} \cdot \text{Å}^{-1}$ for residual atomic forces. The heterostructure model incorporated a periodic slab geometry with a 15 Å vacuum spacer along the z-axis to mitigate periodic image interactions. Brillouin zone sampling utilized a Γ -centered $1 \times 1 \times 1$ k-point mesh following preliminary tests confirming sufficient convergence. Initial

crystallographic configurations for Fe₃O₄, Mo₂C, Ni, and NiFe₂O₄ were obtained from the Materials Project Database (materialsproject.org) and subsequently refined through HRTEM-informed structural matching and XRD-pattern validation. The computational model incorporated three primary characteristics: (i) vertically aligned Fe₃O₄ nanocrystals anchored on the thermodynamically stable Mo₂C(101) surface, (ii) Ni₆ clusters strategically positioned at Mo₂C/Fe₃O₄ interfacial regions to replicate experimental observations of Ni nanoparticle segregation, and (iii) a representative 154atom supercell composition (Ni₆Fe₁₂O₁₆Mo₆₀C₆₀) reflecting experimental stoichiometries. Adsorption energetics were subsequently calculated through fundamental thermodynamic analysis using the relation:¹

$$E_{ads} = E_{adsorbate/substrate} - E_{subtrate} - E_{adsorbate} \#(1)$$

where $E_{adsorbate/substrate}$, $E_{subtrate}$, and $E_{adsorbate}$ represent the total energies of the optimized adsorption system, pristine substrate, and isolated adsorbate molecule, respectively.

The electrochemical reaction free energy (ΔG) was determined by:

$$\Delta G = \Delta E + \Delta Z P E + \Delta T S \# (2)$$

where ΔE denotes the DFT-calculated energy difference between initial and final states, ΔZPE the zero-point energy correction, and ΔTS the entropic contribution at 298.15 K.

Electronic structure analyses included:

Charge transfer density:²

$$\rho_{int} = \int \rho_{avg}(z) \, dz \#(3)$$

d-band center position:

$$\varepsilon_{d} = \frac{\int E \times PDOS_{d}(E) \, dE}{\int PDOS_{d}(E) \, dE} \#(4)$$

where $PDOS_d(E)$ represents the projected density of states for *d*-orbitals.

The alkaline oxygen evolution reaction (OER) pathway follows a four-electron mechanism:³

* +
$$OH^- \rightarrow OH$$
 * + $e^- \# (5)$
* $OH + OH^- \rightarrow 0$ * + $H_2O(l) + e^- \# (6)$
* $O + OH^- \rightarrow * OOH + e^- \# (7)$
* $OOH + OH^- \rightarrow * + H_2O(l) + O_2(g) + e^- \# (8)$

The hydrogen evolution reaction (HER) proceeds via the Volmer step:⁴

$$* + H_2O(l) + e^- \rightarrow H * + OH^- \#(9)$$

The lattice mismatch was calculated by following equation:

$$\delta = \frac{a_2 - a_1}{a_1} = \frac{\Delta a}{a} \# (10)$$

where a_1 represented the lattice constant of the substrate material and a_2 was the lattice constant of the epitaxial layer material.

2. Preparation of Mo₂C/Ni/Fe₃O₄

The homemade Mo₂C nanospheres (0.50 g) were ultrasonically dispersed in 24 mL of ethylene glycol/water mixed solvent (v/v = 1:2) to form a homogeneous suspension. The suspension was magnetically stirred while sequentially adding FeCl₃·6H₂O (0.41 g) and NiCl₂·6H₂O (0.18 g) until complete dissolution of the metal salts. Subsequently, 32 mL of 4 M NaOH aqueous solution was added dropwise under vigorous stirring, resulting in the formation of a brown colloidal suspension. The mixture was transferred into a 100 mL polytetrafluoroethylene-lined autoclave and hydrothermally treated at 180 °C for 10 h. After natural cooling to room temperature, the product was collected by centrifugation, washed thoroughly with deionized water and ethanol, then vacuum-dried at 60 °C for 12 h to obtain the Mo₂C/Ni/Fe₃O₄ composite. For comparison, NiFe₂O₄ was synthesized using the identical procedure without the addition of Mo₂C nanospheres. Similarly, pure Fe₃O₄ nanoparticles were prepared by replacing nickel salts with equivalent molar amount of iron salts while omitting the Mo₂C component. Additionally, two physical mixtures (Mo₂C+NiFe₂O₄ and

 $Mo_2C+Fe_3O_4$) were prepared by thoroughly grinding the respective components in a 1:1 mass ratio for subsequent comparative studies.

3. Preparation of Mo₂C nanospheres

The Mo-polydopamine precursor was first prepared by dissolving $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ (0.98 g) and dopamine hydrochloride (C₈H₁₂ClNO₂, 0.25 g) in 80 mL deionized water under continuous magnetic stirring for 30 min. To this solution, 160 mL anhydrous ethanol was gradually added, inducing a color transition to bright orange. The pH value was carefully adjusted to 8 using diluted ammonia solution (25 wt%), followed by 6 h aging at room temperature to complete the coordination process. The resulting precipitate was collected via centrifugation, washed alternately with deionized water and ethanol three times, then dried under vacuum at 60 °C for 12 h.Subsequent carbothermal reduction was carried out in a tube furnace under flowing N₂ atmosphere. Approximately 1.0 g of the dried precursor was heated to 800 °C at a controlled ramping rate of 5 °C min⁻¹, maintained at this temperature for 2 h, then allowed to cool naturally to ambient temperature, yielding the final Mo₂C nanospheres.

4. Characterization

The morphological features and elemental composition were investigated using field-emission scanning electron microscopy (FE-SEM, FEI Inspect F50, Thermo Fisher Scientific). High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) analyses were conducted on a Talos F200X system (Thermo Fisher Scientific). Crystal structure characterization was performed via X-ray diffraction (XRD, Shimadzu XRD-6000) using Cu Ka radiation ($\lambda = 1.5406$ Å) over a 20 range of 10-80°. Surface chemical states were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha) with charge compensation referenced to adventitious carbon (C 1s at 284.8 eV). Molecular vibration modes were characterized by Raman spectroscopy (Thermo Scientific DXR2) with a 532 nm laser source. Table S7 and S8 summarize key analytical parameters obtained from XPS and EIS measurements, correspondingly.

5. Electrochemical Evaluation

Electrochemical measurements were conducted using a CHI 760E potentiostat (CH Instruments) in a conventional three-electrode configuration in 1 M KOH: Catalyst-modified glassy carbon (GC,

3 mm diameter) as a working electrode, high-purity graphite rod as a counter electrode, and saturated calomel electrode (SCE) as a reference electrode. All potentials were converted to the reversible hydrogen electrode (RHE) scale using:

$$E_{RHE} = E_{SCE} + 0.059 \times pH + 0.241\#(11)$$

Hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities were evaluated by linear sweep voltammetry (LSV) at 2 mV s⁻¹ with 90% iR compensation. Electrochemical impedance spectroscopy (EIS) measurements spanned 0.01 Hz to 100 kHz with a 10 mV AC amplitude. Double-layer capacitance (C_{dl}) was determined through cyclic voltammetry (CV) in the non-Faradaic region (-0.05-0.05 V vs. SCE) across scan rates of 10-140 mV s⁻¹. Electrochemically active surface area (ECSA) was calculated via:⁵

$$ECSA = \frac{C_{dl}}{C_s} \# (12)$$

where C_s was general specific capacitance of smooth electrode (0.04 mF cm⁻²).

Hydrogen adsorption/desorption characteristics were probed by CV at elevated scan rates (100-600 mV s⁻¹). Catalytic durability was assessed through chronopotentiometry at 10 mA cm⁻² for 150 h. Full water splitting tests employed two symmetrical Ni foam electrodes (1 cm²) loaded with Mo₂C/Ni/Fe₃O₄. Gas evolution quantification for Faraday efficiency calculations utilized a calibrated gas chromatograph (GC, Agilent 7890B).

The Mott-Schottky is performed by coating the catalyst on ITO glass in 0.5 M Na₂SO₄. The flat band potential (E_{fb}) is obtained by Mott-Schottky equation:

$$\frac{1}{C^2} = \frac{2}{e\varepsilon\varepsilon_0 N_d} \left[\left(E - E_{fb} \right) - \frac{\kappa T}{e} \right] \# (13)$$

where E_{fb} is the flat band potential.

The carrier density was calculated by fitting slope of Mott-Schottky curve:

$$N_D = \frac{2}{\varepsilon_r \varepsilon e k} \#(14)$$

where $N_{\rm D}$ was carrier density, k was fitting slope.

6. Catalyst ink preparation

2.0 mg catalyst powder was homogenized with 0.5 mg acetylene black and 50 μ L Nafion solution (5 wt%) in 2.0 mL ethanol/water (v/v=1:1) via 30-minute ultrasonication. A precisely controlled 20 μ L aliquot was drop-casted onto the GC substrate, achieving a mass loading of 0.42 mg cm⁻² after vacuum drying at 60°C.

Supplementary Figures

Fig. S1 Theoretical calculation model (a) $Mo_2C/Ni/Fe_3O_4$ (b) Mo_2C (c) Fe_3O_4 .

Fig. S2 Electron density of states for (a) $Mo_2C/Ni/Fe_3O_4$ and (b) Mo_2C/Fe_3O_4 . Charge density differences with and without the Ni interlayer at (c) Ni/Fe₃O₄ interface and (d) Mo_2C/Ni interface.

Fig. S3 Projected density of states of *d*-orbit and diagram of downshifted d-band interaction with *s*, *p* orbital.

Fig. S4 (a) XRD spectra of the as-fabricated Mo_2C , $NiFe_2O_4$, and $Mo_2C/Ni/Fe_3O_4$. (b) The local amplification diagram of (311) peak.

Fig. S5 SEM images of (a) Mo_2C , (b) $NiFe_2O_4$ and (c) $Mo_2C+Fe_3O_4$ and (d) $Mo_2C/Ni/Fe_3O_4$. (e) TEM images of $Mo_2C/Ni/Fe_3O_4$. (f) Particle size statistics of surface Ni particles.

Fig. S6 High-resolution XPS spectra: (a) C 1s in $Mo_2C/Ni/Fe_3O_4$ and Mo_2C , (b) Ni 2p and (c) Fe 2p for NiFe₂O₄, (d) Mo 3d for Mo_2C .

Fig. S7 (a) Mott-Schottky curves and (b) Nyquist plots for Mo₂C/Ni/Fe₃O₄ and Mo₂C/Fe₃O₄.

Fig. S8 The equivalent circuit model fitted by the electrochemical impedance spectroscopy data.

Fig. S9 Cyclic voltammetry curves of (a) $NiFe_2O_4$, (b) Mo_2C/Fe_3O_4 , (c) Mo_2C and (d) $Mo_2C/Ni/Fe_3O_4$.

Fig. S10 The overpotential values of the $Mo_2C/Ni/Fe_3O_4$, Mo_2C/Fe_3O_4 , $NiFe_2O_4$, Mo_2C , Pt/C, and RuO₂ at 10, 50, and 100 mA cm⁻².

Fig. S11 (a) Current density-time curves of fully water splitting devices. (b) LSV curves of the fully water splitting devices before and after stability test.

Fig. S12 Cyclic voltammetry curves of (a) $Mo_2C/Ni/Fe_3O_4$, (b) $Mo_2C+Fe_3O_4$, (c) Mo_2C and (d) Pt/C.

Fig. S13 Comparative analysis of electrochemical active surface area.

Fig. S14 Potential plots vs. pH at different current densities: (a) 10, (b) 50 and (c) 100 mA cm⁻².

Fig. S15 Raman spectra of the as-synthesized Mo₂C, NiFe₂O₄, and Mo₂C/Ni/Fe₃O₄.

Fig. S16 (a) Diagram of anion-exchange membrane water electrolytic cell. (b) The performance comparison of $Mo_2C/Ni/Fe_3O_4$ with commercial electrolytic Pt/C and RuO₂. (c) Faradaic efficiency. (d) Solar-driven electrolytic cell. (e) Comparison with the reported multi-component catalysts (Table S7, S8).

Fig. S17 (a) XRD pattern of the $Mo_2C/Ni/Fe_3O_4$ after HER and OER. High-resolution of (b) Ni 2p, (c) Fe 2p and (d) Mo 3d spectra of $Mo_2C/Ni/Fe_3O_4$ after OER for 10 h. SEM images of microstructure after (e) HER and (f) OER for 10 h.

Supplementary Tables

Crystal cell	a×b×c
Ni	3.5238×3.5238×3.5238
Fe ₃ O ₄	8.3847×8.3847×8.3847
Mo ₂ C	3.0124×3.0124×4.7352

 Table S1. Parameters for lattice strain calculations.

Table S2. Key parameters derived from Nyquist plot fitting during HER.

Parameter	M02C/Ni/Fe3O4	M02C	Mo ₂ C+Fe ₃ O ₄
$R_s \left(\Omega \ { m cm^2} ight)$	2.1 ± 0.1	2.3 ± 0.2	2.4 ± 0.3
$R_{ct} \left(\Omega \ \mathrm{cm}^2\right)$	9.9 ± 0.4	18.4 ± 0.7	23.8 ± 1.1
$C_{dl} (mF cm^{-2})$	12.7 ± 0.5	8.2 ± 0.3	6.9 ± 0.4
$C_{dl} (mF cm^{-2})^*$	90.1	34.3	28.7
Tafel Slope (mV dec ⁻¹)	57.7 ± 1.2	195.8 ± 3.1	126.3 ± 2.5
Dominant Mechanism	Heyrovsky-controlled	Volmer-limited	Volmer-Heyrovsky

* Experimental data calculated by CV plots.

 Table S3 Key parameters derived from Nyquist plot fitting during OER.

Parameter	Mo ₂ C/Ni/Fe ₃ O ₄	NiFe ₂ O ₄	M02C+NiFe2O4
$R_s \left(\Omega \ { m cm}^2 ight)$	1.1 ± 0.1	1.0 ± 0.3	1.3 ± 0.2
$R_{ct} \left(\Omega \ { m cm}^2 ight)$	39.5 ± 1.1	127.6 ± 4.1	68.3 ± 2.3
$C_{dl} (mF cm^{-2})$	90.1 ± 3.2	22.9 ± 1.4	54.7 ± 2.1
$C_{dl} (mF cm^{-2})^*$	90.1	22.7	28.7
TOF (s^{-1})	0.45	0.09	0.28

* Experimental data calculated by CV plots.

Parameter	M02C/Ni/Fe3O4	M02C+Fe3O4
$R_2 \left(\Omega \ { m cm}^2 ight)$	12.7	38.4
$C_{\varphi} \ (\mathrm{mF} \ \mathrm{cm}^{-2})$	4.51	1.60
$\tau \left(R_2 \times C_{\varphi}, \mathrm{ms} \right)$	57.3	61.4

Table S4 Key parameters derived from EIS plot fitting (η =200 mV):

Table S5. Tafel slope of $Mo_2C/Ni/Fe_3O_4$ at different pH conditions.

рН	η10 (mV)	Tafel Slope (mV dec ⁻¹)
14	228	42.3
13	348	61.7
12	658	89.4

	Mo ₂ C/Ni/Fe ₃ O ₄	NiFe ₂ O ₄	Mo ₂ C	
Elements	Component(eV)/	Component(eV)/	Component(eV)/	Assignment
	Content (at, %)	Content (at, %)	Content (at, %)	
	283.9/41.5%		283.7/20.3%	C-M
	284.3/16.7%		284.4/45.5%	C-C
C 1s	284.8/14.0%		285.1/14.7%	C-N
	285.9/18.1%		286.1/19.5%	C-O
	288.1/9.7%		_	O=C-O
	228.6/4.5%		228.5/13.0%	$+2 (3d_{5/2})$
	229.6/4.5%	_	229.2/10.0%	$+3 (3d_{5/2})$
	231.2/5.0%		230.5/9.9%	$+4 (3d_{5/2})$
Ma 24	232.2/22.3%		232.0/22.2%	$+2 (3d_{3/2})$
Ivio 3d	232.7/38.4%		232.5/5.4%	$+6 (3d_{5/2})$
	233.3/18.0%		232.9/13.7%	$+3 (3d_{3/2})$
	234.2/2.7%		233.9/8.7%	$+4 (3d_{3/2})$
	235.9/47.1%		235.7/18.1%	$+6 (3d_{3/2})$
	710.6/16.9%	709.8/14.3%		$+2(2p_{3/2})$
	712.0/26.9%	711.3/27.2%		+3 (O _h)
	715.7/16.8%	714.8/13.9%		$+3 (T_d)$
Ea 2n	720.1/5.4%	719.3/10.0%		Sat.
re 2p	723.3/9.4%	722.6/6.5%		$+2(2p_{1/2})$
	725.6/11.6%	724.8/13.6%		+3 (O _h)
	729.6/10.1%	727.8/9.3%		$+3 (T_d)$
	734.2/2.9%	733.3/5.2%	_	Sat.
	852.6/12.4%	-		$+0(2p_{3/2})$
	855.1/27.3%	854.7/31.8%		$+2(2p_{3/2})$
	856.4/15.0%	856.0/13.1%		$+3(2p_{3/2})$
NI: Ou	861.7/17.6%	861.4/28.9%		Sat.
INI 2p	871.7/5.7%	_		$+0(2p_{1/2})$
	872.5/3.7%	872.2/7.6%		$+2(2p_{1/2})$
	873.8/6.7%	873.4/6.7%		$+3(2p_{1/2})$
	879.5/11.6%	879.3/11.9%		Sat.

Table S6. XPS result of $Mo_2C/Ni/Fe_3O_4$, $NiFe_2O_4$ and Mo_2C

Table S7. A summary of the OER performance based on various catalysts in 1 M KOH.

Catalysts	Overpotential (10 mA cm ⁻²)	Reference
Mo ₂ C/Ni/Fe ₃ O ₄	228 mV	This work
RuO ₂	291 mV	This work
Fe-NiO/NiS ₂	270 mV	[6]
FeCoNiP/FeCoNi	240 mV	[7]
CuNCs@4MP	280 mV	[8]
CoO@Co ₃ O ₄ /C	287 mV	[9]
NiSe ₂ /Ni ₂ P/FeSe ₂	242 mV	[10]
EBP@NG	310 mV	[11]

 Table S8. A summary of the HER performance based on various catalysts in 1 M KOH.

Catalysts	Overpotential (10 mA cm ⁻²)	Reference
Pt/C	55 mV	This work
Mo ₂ C/Ni/Fe ₃ O ₄	80 mV	This work
EBP@NG	170 mV	[11]
FeOOH/S-Co	108 mV	[12]
Ni-Co-S@NiMoO4c3xH2O	90 mV	[13]
NiCu@NiCuN@NC	93 mV	[14]
Ni(OH) ₂ /Ni ₃ N	172 mV	[15]
Ni & horbar;Sb	119 mV	[16]

- X. Zhang, S. Zhu, L. Song, Y. Xu and Y. Wang, Nanoscale, 2023, 15, 3764-3771. 1.
- T. Lu and Q. Chen, ChemPhysChem, 2021, 22, 386-395. 2. 3.
- B. Zhang, X. Shang, Z. Jiang, C. Song, T. Maiyalagan and Z. Jiang, ACS Appl. Energy Mater., 2021, 4, 5059-5069.
- P. Kuang, T. Tong, K. Fan and J. Yu, ACS Catal., 2017, 7, 6179-6187. 4.
- C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao and Z. J. Xu, Chem. Soc. Rev., 2019, 48, 5. 2518-2534.
- 6. N. Zhang, Y. Hu, L. An, Q. Li, J. Yin, J. Li, R. Yang, M. Lu, S. Zhang, P. Xi and C. H. Yan, Angew. Chem., Int. Ed., 2022, 61, e202207217.
- 7. G. Wang, H. Zou, H. Zhang, J. Xiang, M. Yang and J. Liu, Electrochim. Acta, 2023, 462, 142723.
- 8. V. Saini, Krishankant, S. Choudhary, A. Gaur, S. Banerjee, V. Bagchi and V. Venkatesh, J. Mater. Chem. A, 2023, 11, 24754-24763.
- 9. H. Chu, D. Zhang, P. Feng, Y. Gu, P. Chen, K. Pan, H. Xie and M. Yang, Nanoscale, 2021, 13, 19518-19526.
- 10. J. Yin, C. Wang, J. Li, K. Zhang, Z. Wu, N. Wang and Y. Du, Nanoscale, 2023, 15, 4523-4528.
- 11. Z. Yuan, J. Li, M. Yang, Z. Fang, J. Jian, D. Yu, X. Chen, L. Dai, J. Am. Chem. Soc., 2019, 141, 4972-4979.
- 12. Z. Zang, Y. Ren, X. Li, Y. Cheng, L. Li, X. Yu, X. Yang, Z. Lu, X. Zhang and H. Liu, J. Mater. Chem. A, 2023, 11, 24618-24628.
- 13. Z. Gao, T. Zhang, D. Xu, P. Liu, H. Liu, H. Li, Y. Liu, F. Yu and G. Wang, J. Catal., 2024, 434, 115540.
- 14. J. Hou, Y. Sun, Z. Li, B. Zhang, S. Cao, Y. Wu, Z. Gao and L. Sun, Adv. Funct. Mater., 2018, **28**.
- 15. C. E. Chukwuneke, K. Kawashima, H. Li, R. A. Marquez, Y. J. Son, L. A. Smith, H. Celio, G. Henkelman and C. B. Mullins, J. Mater. Chem. A, 2024, 12, 1654-1661.
- 16. V. K. Mariappan, K. Krishnamoorthy, P. Pazhamalai, R. Swaminathan, S.-J. Kim, Small, 2024, 20, 2402355.