Supporting Information

Suppressing Failure Mechanisms in Thick Ni-Rich Cathodes Using Angstrom-Level Alumina Coatings

Surat Prempluem, Thitiphum Sangsanit, Worapol Tejangkura and Montree Sawangphruk*

Centre of Excellence for Energy Storage Technology, Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand E-mail: montree.s@vistec.ac.th

Supporting results

Fig. S1 SEM-EDS mapping of an electrode coated with 10 ALD cycles showing (a) SEM image, (b) Nickel (Ni) signal, (c) Aluminum (Al) signal, and (d) carbon (C) signal.

Element	Line Type	Apparent Concentration	k Ratio 1	Wt%	Wt% Sigma
C	K series	1.69	0.01686	32.01	0.09
0	K series	3.78	0.01272	20.80	0.07
F	K series	1.31	0.00257	5.13	0.05
Al	K series	0.10	0.00071	0.77	0.01
Ti	K series	0.06	0.00056	0.36	0.02
Mn	K series	0.71	0.00713	4.42	0.04
Co	K series	0.67	0.00674	4.68	0.05
Ni	K series	4.73	0.04734	31.83	0.10
Total:				100.00	

Table S1. Elemental composition determined by SEM-EDS according to Fig. S1.

Fig. S2 SEM-EDS mapping of an electrode coated with 25 ALD cycles showing (a) SEM image, (b) Ni signal, (c) Al signal, and (d) C signal.

Element	Line Type	Apparent k Ratio Concentration		Wt%	Wt% Sigma
С	K series	0.22	0.00221	16.42	0.14
0	K series	1.86	0.00624	25.98	0.11
Al	K series	0.06	0.00043	1.62	0.03
Si	K series	0.00	0.00001	0.02	0.02
Ti	K series	0.02	0.00018	0.36	0.03
Mn	K series	0.32	0.00315	6.04	0.07
Co	K series	0.29	0.00288	6.21	0.10
Ni	K series	2.08	0.02079	43.37	0.17
Total:				100.00	

Table S2. Elemental composition determined by SEM-EDS according to Fig. S2.

Fig. S3 SEM-EDS mapping of an electrode coated with 50 ALD cycles showing (a) SEM image, (b) Ni signal, (c) Al signal, and (d) C signal.

Element	Line	Apparent k Ratio		Wt%	Wt%
	туре	Concentration	1		Sigilia
C	K series	0.14	0.00138	13.59	0.20
0	K series	1.35	0.00453	22.71	0.15
F	K series	0.21	0.00041	3.00	0.10
Al	K series	0.12	0.00085	3.95	0.06
Si	K series	0.00	0.00000	0.00	0.00
Ti	K series	0.02	0.00021	0.51	0.05
Mn	K series	0.25	0.00249	5.86	0.11
Co	K series	0.25	0.00250	6.59	0.15
Ni	K series	1.71	0.01715	43.79	0.25
Total:				100.00	

Table S3 Elemental composition determined by SEM-EDS according to Fig. S3.

Number of ALD cycles	Thickness (nm)
0	0
10	2.42
25	3.37
50	7.40

Table S4 Coating thickness measured from HRTEM images for NMC, NMC-10ALD, NMC-25ALD, and NMC-50ALD samples, as shown in Fig 3.

Fig. S4 Relationship between coating thickness determined from HRTEM and the number of ALD cycles, illustrating the growth rate of the alumina layer per cycle.

Active Material	Type of Substrate	Growth Rate	Temperature (°C)	Reference	
	Substitute	(Å/cycle)	(0)		
LCO	Particle	2.2, 2	180	1, 2	
	Electrode	2.2, 1	180	1, 3	
		1.3	150	4	
NMC111	Particle	1.3	180	5	
		2.2	120	6	
	Electrode	0.99	85	7	
NMC442	Electrode	1.1-1.5	120	8	
NMC532	Particle	1.2	200	9	
		1	100	10	
	Electrode	1.1	180	11	
		1.0-3.0	120	12	
NMC622	Particle	1.3	110	13	
		1.1-1.2	100	14	
	Electrode	1	120	15	
NMC70	Electrode	1	120	15	
NMC811	Electrode	1	120	15	

Table S5 Summary of growth rates of Al_2O_3 deposited by ALD on layered oxide cathodes from previous studies.

Fig. S5 XRD diffraction patterns of (a) NMC811, (b) NMC-10ALD, (c) NMC-25ALD, and (d) NMC-50ALD, along with the corresponding Rietveld refinement results.

	Lattice parameters			
-	a (['] A)	c (À)	%Ni in Li layer	R_{bragg}
NMC	2.8726	14.2008	2.656	1.11
NMC-10ALD	2.8721	14.1992	2.926	1.21
NMC-25ALD	2.8721	14.2000	2.576	0.97
NMC-50ALD	2.8721	14.1997	3.090	1.37

Table S6. Lattice parameters obtained from Rietveld refinement for NMC, NMC-10ALD, NMC-25ALD, and NMC-50ALD, corresponding to the XRD patterns shown in Fig. S5.

Fig. S6 XPS depth profiles of (a) NMC-10ALD, (b) NMC-25ALD, and (c) NMC-50ALD, displaying the atomic concentrations calculated from C 1s, O 1s, Al 2p, and Ni 2p3/2 signals. The dashed lines represent the thickness of the primary Al_2O_3 layer.

Number of ALD cycle	Ar Bombard (s)
0	0
10	22
25	50
50	100

Table S7. Coating thickness (etching time) determined from XPS analysis, as illustrated in Fig. S6.

Fig. S7 Relationship between etching time, representing coating thickness as determined from XPS, and the number of ALD cycles, illustrating the growth rate of the alumina layer.

		Coating thickness = $230 \ \mu m$		
	Anode: Graphite	Electrode thickness = 130 μm (Pressing 6.5 tons)		
Electrode properties		Active mass = 9.92 g		
		Coating thickness = 215 μ m		
	Cathode: NMC811	Electrode thickness = 145 µm (Pressing 9 tons)		
		Active mass = 14.63 g		
N-to-p ratio	1.20 (NMC811 = 180 mAh/g, Graphite = 320 mAh/g)			
Cell weight	41.60 g			
Electrolyte	1.2 M LiPF ₆ in FEC: DMC (1: 4, v/v) 4.63 g			
Cell Capacity	2,373 mAh (0.1C)			
1 7	2,319 mAh (0.2C)			
Nominal voltage	3.67 V			
	Volumetric 544 Wh/L _{cell} (16 ml)			
Energy density	Gravimetric 209 Wh/kg _{cell}			
	595 Wh/kg _{NMC}			
Internal resistance	18.2 mΩ			

Table S8. Properties of NMC811 and graphite electrodes for 18650 cylindrical cells.

Fig. S8 dQ/dV peak of (a) NMC, (b) NMC-10ALD, (c) NMC-25ALD, and (d) NMC-50ALD at checkup cycle at C/20 in the voltage range of 3.0-4.3V.

Fig. S9 dQ/dV peak enlarged at H1-M peak position of (a) NMC, (b) NMC-10ALD, (c) NMC-25ALD, and (d) NMC-50ALD at checkup cycle at C/20 in voltage range of 3.0-4.3V.

Fig. S10 Capacity retention of NMC and NMC-10ALD testing at 60°C in voltage range of 3.0-4.3V at 1C.

Fig. S11 Electrochemical performance of 18650 cylindrical cells of NMC and NMC-10ALD as cathode couple with graphite anode: (a) coulombic efficiency, (b) charge-discharge profile of formation cycle, (c) charge-discharge profile of capacity determination at C/10, and (d) charge-discharge profile of capacity determination at C/5.

Coating	Coating Material	Active	Testing	Capacity	Configuration	Reference
Technique	_	Material	Condition	Retention	_	
This work	Al ₂ O ₃	NMC811	3.0-4.3	52.88%	Half cell	-
ALD			0.5C	@499cycle	Coin cell	
			3.0-4.2	71.20%	Full cell	
			Chg 0.5C	@1,000cycle	18650	
			Dchg 1C			
ALD	Al ₂ O ₃	NMC532	3.0-4.6 V	75.5%	Half cell	11
			1C	@ 100cycle	Coin cell	
ALD	Al ₂ O ₃	NMC811	-	76.3%	Full cell	16
				@600cycle	Coin cell	
			2.7-4.3	88.0%@300	Half cell	
			1C	<u> </u>	Coin cell	
ALD	Al ₂ O ₃	NMC622	2.8-4.2 V	85.3%	Full cell	13
	-		CCCV	@1,400	Coin cell	
			1C	-		
ALD	Al ₂ O ₃	NMC532	3.0-4.3V	~90%	Half cell	9
	-		Chg C/3	@180cycle	Coin cell	
			Dchg 1C	· ·		
ALD	Al ₂ O ₃	LCO	3.3-4.5V	89%	Half cell	1
			1C	@120cycle	Coin cell	
ALD	Al ₂ O ₃	NMC111	3.0-4.5V	96%	Half cell	5
	2 5		1C	@100cycle	Coin cell	
ALD	Al ₂ O ₃	NMC532	3.0-4.3V	92.1%	Half cell	10
	2 5		C/5	@100cycle	Coin cell	
				· ·		
ALD	Al ₂ O ₃	NMC532	3.0-4.5V	85%	Half cell	12
			0.5C	@100cycle	Coin cell	
ALD	Al ₂ O ₃	NMC622	3.0-4.3V	94.5%	Half cell	14
			0.5C	@45cycle	Coin cell	
Dry	Al ₂ O ₃	NMC811	3.0-4.2V	77.4%	Full cell	17
coating			0.5C	@300cycle	18650	
_			2.7-4.3 V	86.5%	Half cell	
			1C	@100cycle	Coin cell	
Drv	Al ₂ O ₃	NMC70	3.0-4.3V	92%	Half cell	18
coating	2 5	1515	0.5C	@100cycle	Coin cell	
Wet	Al ₂ O ₃	LNO	3.0-4.3V	96%	Half cell	19
coating	2 5		C/3	@200cycle	Coin cell	
Wet	Al ₂ O ₃	NMC811	2.8-4.3V	98.31%	Half cell	20
coating	2 5	_	1C	@200cycle	Coin cell	
Drv	Al(OH) ₃	NMC811	2.75-	87.6%	Half cell	21
coating		_	4.3V	@200cycle	Coin cell	
			1C			
ball	LiAlO ₂ /Al(OH) ₂	NMC811	2.5-4.3V	93.90%	Half cell	22
milling	2 ()3		1C	@200cvcle	Coin cell	
mixing						
and solid-						
phase						
synthesis						

Table S9. Summarized electrochemical performance of various coating strategies applied on NMC series cathode.

Fig. S12 The galvanostatic intermittent titration technique (GITT) step: (a) The procedure of GITT measurement coupled with capacitance measurement, including the conditioning step (black), formation steps (green), and GITT step (purple). (b) The relationship between cell voltage and $\tau^{1/2}$.

Fig. S13 Lithium-ion diffusion coefficient calculated from GITT as a function of voltage during (a) charge and (b) discharge.

Link to Video S1. Jelly roll 18650 cylindrical cells during formation cycle followed by electrochemical abuse at 4.3, 4.6, and 4.9 V of NMC and NMC-10ALD.

 $\label{eq:https://www.dropbox.com/scl/fi/cgo2u9adtdn816op79b4i/VDO_S1.mp4?rlkey=sxuqcbxv73vfyqf75m9iihkyq&st=otg3f00b&dl=0$

Fig. S14 Calibration curve of transition metal dissolution used to determine the elemental concentration in ICP-OES for (a) Ni, (b) Mn, and (c) Co.

Fig. S15 The jelly roll showing color of electrolyte at (a) before abuse, (b) before explosion of NMC after abused at 4.9V, and (c) before explosion of NMC-10ALD after abused at 4.9V. (d) Transition metal dissolution in electrolyte

Fig. S16 Oxygen signal detected from DEMS measurement

Fig. S17 1H NMR spectra of fresh electrolyte (blue) and electrolyte collecting from the jelly roll according to experimental shown in Fig. 5 including NMC and NMC-10ALD after abused at 4.3V (red and green), and 4.6V (purple and yellow), respectively.

Fig. S18 Experimental set-up of *in situ* XRD.

Fig. S19 The capacitance measurement for surface area change investigation. (a) The procedure of capacitance measurement includes the conditioning step (black), formation (green), and cycling (orange) before holding CV at 2.5 V, followed by PEIS, illustrated as blue dots. (b) Equivalent circuit used to fit the EIS spectra in the frequency range of 1 Hz - 100 mHz. (c) example of Nyquist plot shows the experimental data (black dot) and the fitting result (green line). (d) The percentage of increase in capacitance with respect to their capacitance before testing (after conditioning) of NMC and NMC-10ALD.

Fig. S20 STEM images show (a)HAADF-STEM and (b)BF-STEM image of NMC and(c)HAADF-STEM and (d)BF-STEM image of NMC-10ALD after electrochemical stability test for 1,000 cycles.

Fig. S21 STEM-EDS mapping of NMC-10ALD after electrochemical stability test for 1,000 cycle showing (a) STEM image of mapped area, (b) overlapping of Al and Ni signal with individual mapping of (c) Ni and (d)Al.

Fig. S22 DSC curves of NMC and NMC-10ALD collected after 1,000 cycles at charged state.

Fig. S23 XPS spectrum of Al 2p for (a)fresh NMC-10ALD and (b)cycled NMC-10ALD

References

- 1. Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George and S.-H. Lee, *Journal of The Electrochemical Society*, 2010, 157, A75.
- 2. M. Xie, T. Hu, L. Yang and Y. Zhou, *RSC Advances*, 2016, 6, 63250-63255.
- 3. Q. Cheng, T. Yang, Y. Li, M. Li and C. K. Chan, *Journal of Materials Chemistry A*, 2016, 4, 6902-6910.
- 4. X. Li, J. Liu, X. Meng, Y. Tang, M. N. Banis, J. Yang, Y. Hu, R. Li, M. Cai and X. Sun, *Journal of Power Sources*, 2014, 247, 57-69.
- J. W. Kim, J. J. Travis, E. Hu, K.-W. Nam, S. C. Kim, C. S. Kang, J.-H. Woo, X.-Q. Yang, S. M. George, K. H. Oh, S.-J. Cho and S.-H. Lee, *Journal of Power Sources*, 2014, 254, 190-197.
- A. L. Hoskins, W. W. McNeary, S. L. Millican, T. A. Gossett, A. Lai, Y. Gao, X. Liang, C. B. Musgrave and A. W. Weimer, *ACS Applied Nano Materials*, 2019, 2, 6989-6997.
- A. K. Haridas, Q. A. Nguyen, B. F. Song, R. Blaser and S. L. Biswal, ACS Applied Energy Materials, 2020, 3, 456-468.
- A. M. Wise, C. Ban, J. N. Weker, S. Misra, A. S. Cavanagh, Z. Wu, Z. Li, M. S. Whittingham, K. Xu, S. M. George and M. F. Toney, *Chemistry of Materials*, 2015, 27, 6146-6154.
- 9. M. R. Laskar, D. H. K. Jackson, S. Xu, R. J. Hamers, D. Morgan and T. F. Kuech, ACS Applied Materials & Interfaces, 2017, 9, 11231-11239.
- 10. D. H. K. Jackson and T. F. Kuech, *Journal of Power Sources*, 2017, 365, 61-67.
- 11. Y. Shi, M. Zhang, D. Qian and Y. S. Meng, *Electrochimica Acta*, 2016, 203, 154-161.
- 12. Y. Su, S. Cui, Z. Zhuo, W. Yang, X. Wang and F. Pan, ACS Applied Materials & Interfaces, 2015, 7, 25105-25112.
- 13. S. Neudeck, A. Mazilkin, C. Reitz, P. Hartmann, J. Janek and T. Brezesinski, *Scientific Reports*, 2019, 9, 5328.
- X. Wang, J. Cai, Y. Liu, X. Han, Y. Ren, J. Li, Y. Liu and X. Meng, *Nanotechnology*, 2021, 32, 115401.
- 15. R. S. Negi, S. P. Culver, M. Wiche, S. Ahmed, K. Volz and M. T. Elm, *Physical Chemistry Chemical Physics*, 2021, 23, 6725-6737.
- L. Wang, Q. Su, W. Shi, C. Wang, H. Li, Y. Wang, G. Du, M. Zhang, W. Zhao, S. Ding and B. Xu, *Electrochimica Acta*, 2022, 435, 141411.

- K. Srimanon, S. Vadivel and M. Sawangphruk, *Journal of Power Sources*, 2022, 550, 232150.
- M. J. Herzog, N. Gauquelin, D. Esken, J. Verbeeck and J. Janek, *Energy Technology*, 2021, 9, 2100028.
- A. R. Haworth, B. I. J. Johnston, L. Wheatcroft, S. L. McKinney, N. Tapia-Ruiz, S. G. Booth, A. J. Nedoma, S. A. Cussen and J. M. Griffin, *ACS Applied Materials & Interfaces*, 2024, 16, 7171-7181.
- 20. D. Hu, F. Du, H. Cao, Q. Zhou, P. Sun, T. Xu, C. Mei, Q. Hao, Z. Fan and J. Zheng, Journal of Electroanalytical Chemistry, 2021, 880, 114910.
- F. Wu, Q. Shi, L. Chen, J. Dong, J. Zhao, H. Wang, F. Gao, J. Liu, H. Zhang, N. Li,
 Y. Lu and Y. Su, *Chemical Engineering Journal*, 2023, 470, 144045.
- J. Wang, D. Zhao, G. Zhou, S. Wei, S. Hou, Y. Li, H. Ma, Y. Yuan, X. Yan and X. Hou, *Ceramics International*, 2023, 49, 15842-15850.