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Figure. S1. Regression scatter plot of SVM optimal model

Table S1. Summary of the performance of the various models built in Weka

Weka .
Train set Test set
(5 folds)
Evaluati
valuation - oy MAE  RAE R RMSE  MAE  RAE
factor
RF 077 34201 213.66 5058  0.66  363.68 25778  65.59

ANN MLP) 0.77 37487  297.65  70.46 0.38 650.89 42328 107.69

Note: R is the correlation coefficient, assessing the same role as the R? value, and

RAE is the relative absolute error.
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Figure. S2. Confusion matrix for the RFC model (a) training set (b) test set and for the GBC



model (c) training set (d) test set

Note: Confusion matrix clearly and intuitively shows the sample counts comparison
between the actual and predicted grades. For example, grade B in Fig. S2 (a) : 9 samples
are correctly predicted as B and 1 sample is incorrectly predicted as A, which
corresponds to the Precision (accuracy) of grade “B”  on the training set in Table 2.1
being 0.92; As shown in Fig. S2 (b), grade A: 0 samples were correctly predicted as A,
1 sample was incorrectly predicted as D, and 1 sample was incorrectly predicted as E.
Grade B: 1 sample is incorrectly predicted as C and 2 samples are incorrectly predicted

as D. Grade C: 2 samples are correctly predicted to be C, and so on.
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Figure. S3. Two-feature ablation experiments of BET to Ni-Co ratio for (a) MLP model and (b)
RF model

Note: We conducted virtual ablation experiments on two highly interactive features-



“Nickel-cobalt ratio” (feature index 0)and “BET” (index 7)-using two different
models (MLP and RF), and employed SHAP analysis to validate the quantitative
consistency of feature interaction importance. For the MLP model, the baseline test
performance reached R*> = 0.9147 and RMSE = 150.67. When both features were set
to zero, model performance markedly deteriorated to R> =0.3708 and RMSE =409.23,
resulting in AR? = 0.5439 and 4 RMSE = 258.56. Meanwhile, the sum of the
absolute SHAP values for these two features across the top 50 samples, computed using
KernelExplainer, was 145.79-closely matching the increase in RMSE-indicating that
SHAP contributions can approximate the impact of feature interaction on prediction
error. The ablation results for the Random Forest model showed a similar trend. The
baseline performance was R*> = 0.9419 and RMSE = 124.37, which dropped sharply
to R*> =0.3263 and RMSE = 423.47 after the two features were removed, leading to
AR? =0.6156 and ARMSE = 299.10. These results further confirmed the critical
importance of these two features within the RF model. The outcomes of both ablation
experiments and SHAP-based interaction analysis were highly consistent at the
quantitative level-the SHAP interaction intensity (~145.8) and the corresponding
increases in RMSE (~258.6 and ~299.1) were strongly aligned, substantiating the
reliability of SHAP interaction importance in interpretable machine learning. This
experiment. clearly demonstrates the pivotal role of the “Nickel - Coratio” and BET
surface area as high-interaction features in predicting specific capacitance (Csp). These
findings provide a robust basis for experimental decision-making guided by model
outputs and offer quantitative direction for researchers in selecting key adjustable
parameters and conducting targeted experiments during practical material design and

optimization.



Table S2. Optimal hyperparameter configurations of various models in Anaconda

MLP GB RF SVM RFC GBC
hidden_layer sizes:
(150)
n_estimators  max_depth:4 n_estimators:
activation:'logistic’ C:10000
;461 9 n_estimators: 1 100
solver:'lbfgs' gamma:
learning rat  min_samples 12, learning rate:
max_iterations: 135 ‘auto’
e:0.3 _split:2 max_features: 0.01
00 kernel:'rb
max_depth:1 n_estimators: None max_depth:3
learning rate:0.000 f
1 15 max_depth:60  min_samples_
1 epsilon:le
min_samples  min_samples min_samples split:2
tol:1e-07 -05
_split:3 _leaf:1 split:4 min_samples
alpha:1e-08 coef.0.1
min_samples  bootstrap:Fa min_samples | leaf:1
early stopping:Fals shrinking:
_leaf:2 Ise eaf:1 subsample:0.4
e True
max_feature  max_features bootstrap:True  max_features:
validation_fraction: t0l:0.0001
s:'sqrt’ Hsqrt'! 1.0
0.1
n_iter no_change:5
0.3 1 = MLP mRF
0.25
E 0.2
>
§ 0.15
=
£
702 0.1
0.05 4
. Nickel. |Selenized/o] o ite | Morpholog | With/with - Mass Voltage | Current
ok s Comose | Morsilo | Wikt g | M | ger | Volage | o
= MLP 0.035 0.085 0.062 0.066 0.107 0.018 0.055 0.075 0.038 0.0185
uRF 0.0882 0.0529 0.0729 0.1683 0.0295 0.01 0.1526 0.24 0.0988 0.0867

Figure. S4. Summary of MLP and RF importance rankings and corresponding histograms

Note: The relative importance values of the attributes in the MLP model are divided



by 10 to normalize them against the importance values of the attributes in the RF

model.
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Figure. S5. (a) Trivariate-3D plots of with/without adhesive, current density vs. mass loading, and
(b) trivariate-3D plots of with/without adhesive, substrate vs. mass loading

Note: As shown in Fig. S4(a) and (b), the following observations can be made: (i)
conventional nickel foam substrates exhibit a higher potential for accommodating
greater mass loading; (ii) binder-free fabrication methods allow for a higher upper limit
of mass loading, which is consistent with the improved loading capacity enabled by
binder-free strategies; (iii) regardless of binder usage, the specific capacitance initially
increases and then decreases with increasing mass loading, aligning with the
understanding that optimal electrochemical performance requires a reasonable loading
level; (iv) when binder is used, the rate capability first increases and then decreases
with mass loading. This is attributed to the fact that at low mass loading, the electrode
is thinner, facilitating easier electrolyte penetration and enhancing the contact efficiency
between ions and electrolyte, which favors rate performance; whereas at high mass
loading, the electrode becomes thicker, hindering electrolyte infiltration and reducing
the accessibility of inner active sites, thereby lowering rate capability; (v) under binder-
free conditions, the rate capability exhibits the same trend as with binder usage, further

confirming the validity and reliability of the modeling data.
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Fig. S6 (a) CV electrochemical testing and (b) XRD diffraction pattern characterization of
NiCo,04 samples

Note: As shown in Fig. S5(a), the NiCo:04 sample exhibits distinct pseudocapacitive
behavior at moderate to low scan rates (5 mV s7'-20 mV s™'), with evident oxidation
and reduction peaks observed at (0.2 V, 0.35 V) and (0.15 V, 0.4 V), respectively. In
Fig. S5(b), the XRD pattern of the prepared sample displays characteristic diffraction
peak positions and intensities that are consistent with the standard reference card for
NiCo0:04: JCPDS PDF#73-1702, present a typical Fd3m disorderly spinel structure.

Table S3. Comparison of properties of various NiCo0204 electrode materials

Materials Specific Capacitance Cyclic Stability Ref.
. 80% after 5000 cycles at
NiCoO2/G@NF 1220 F g'at 1A g! !
10A g'!
) 93.3% after 5000 cycles at
N-NiCoO 94579 F g'lat 1A g! 2
5Ag!
Porous NiCoO 86% after 3000 cycles at
. 11914F glat1 Ag! 3
nanowire 10Ag!
) 82% after 10000 cycles at
NiCoO-EGO 530Fg'at1 Ag! 4
5Ag!
Nanostructured 92.23% after 5000 cycles
, ) 730 Fglat1 Ag! 3
spinel NiCoO at 50 mV !
urchin-like
94% after 1500 cycles at
nanostructure 4239F glat1.5A ¢! 6
. 75A¢g!
NiCoO
urchin-like NCO- ~97% after 1000 cycles
580F glat1 Ag! 7
D at 15A g
E-NCO 87.2% after 10000 cycles
1360.7F glat1 Ag! 8
nanoarrays at40 A g'!
Chestnut shell 90.3% after 10000 cycles )
1538F glat 1 Ag! This work

spherical NiC0204 at10A g’
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Fig. S7. Histogram of prediction results under different performances of MLP model

Note: As shown in the Fig.S7, different performance outcomes and corresponding
specific capacitance predictions of NiCo0204 samples were obtained from MLP models
trained with either fixed or varied Max_Iterations hyperparameters. Specifically, for
the three groups with the same hyperparameter setting (Max_Iterations = 13500), where
the R? values for the training and test sets were (0.96/0.84), (0.99/0.72), and (0.98/0.69),
the significant overfitting (R? difference > 0.1) led to noticeable deviations between the
predicted and experimental values. In contrast, for the two groups with R? values of
(0.96/0.86) and (0.97/0.88), corresponding to Max_Iterations values of 13500 and
14000 respectively, the prediction errors were smaller and the predicted values were
closer to the actual value (1538), which can be attributed to the lower degree of
overfitting (R? difference < 0.1) and thus a more reasonable generalization capability.
These results indicate that reduced overfitting tends to enhance model prediction
performance. Overall, all prediction errors fell within the RMSE ranges provided by
the training and test sets. Based on this analysis, the following conclusions can be drawn:
(1) the degree of overfitting between the training and test set R? values serves as a
criterion to assess the reliability of the prediction results, and the same principle applies

to cases of underfitting; (ii) the prediction error of the model can be estimated using the



RMSE ranges from the training and test sets, in combination with the level of overfitting
or underfitting, to comprehensively evaluate the credibility of the error range. In other
words, without altering or fine-tuning key hyperparameters of the model (e.g., adjusting
Max_Iterations from 13,500 to 14,000 as shown in the figure), a smaller degree of R?
overfitting between the training and testing sets, along with a narrower RMSE gap,

indicates higher reliability and accuracy of the model in predicting new samples.



Supplementary Note 1: (i) Precision: The proportion of samples predicted to belong to
a given class that actually belong to that class. For A, a precision of 0.80 means that 80%
of the samples predicted as A are actually A. (ii) Recall: The proportion of actual
samples from a given class that are correctly predicted by the model. For A, a recall of
0.75 means that 75% of the actual A samples are correctly predicted. (iii) F1-score: The
harmonic mean of precision and recall for a given class, providing a comprehensive
evaluation of model performance. Support: The actual sample count for each class;
accuracy: Similar to the R* value. (iv) Macro avg: The average precision, recall, and
F1-score across all classes, without considering the sample count of each class. (v)
Weighted avg: The weighted average of precision, recall, and F1-score across all classes,

considering the sample count of each class.

Supplementary Note 2: Univariate sensitivity analysis was conducted by repeatedly
training the model on datasets in which the values of a single feature column were
manually shuffled, and comparing the resulting R? scores with those obtained from the
original unshuffled dataset using the same model configuration. A larger difference in
R? score indicates a greater impact of the corresponding feature on model performance.
In this study, the MLP model was used to evaluate the relative importance of the most
influential feature-“With/without adhesive”-by shuffling its values in descending order.
Under identical hyperparameter settings, the model’s R? score changed from 0.984 to
0.999. Similarly, when the moderately important feature “mass loading” and the least
important feature “current density” were shuffled using the same method, the R? scores
changed to 0.997 and 0.991, respectively. Thus, the largest R? variation occurred when
the binder feature was shuftled. Assuming model randomness is negligible, this analysis
further confirms that the “binder” feature has the highest influence on the MLP model’s
prediction performance compared to the other two attributes, which is consistent with
the ranking shown in Figure 5(b). Similar tests were also performed on the RF model,
and the results aligned with those shown in Figure 5(a); therefore, they are not discussed

in detail here.
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