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Figure. S1. Regression scatter plot of SVM optimal model 

 

Table S1. Summary of the performance of the various models built in Weka 

Weka 

（5 folds） 
Train set Test set 

Evaluation 

factor 
R RMSE MAE RAE R RMSE MAE RAE 

RF 0.77 342.01 213.66 50.58 0.66 363.68 257.78 65.59 

ANN（MLP） 0.77 374.87 297.65 70.46 0.38 650.89 423.28 107.69 

Note: R is the correlation coefficient, assessing the same role as the R2 value, and 

RAE is the relative absolute error. 

 

 

Figure. S2. Confusion matrix for the RFC model (a) training set (b) test set and for the GBC 



model (c) training set (d) test set 

Note: Confusion matrix clearly and intuitively shows the sample counts comparison 

between the actual and predicted grades. For example, grade B in Fig. S2 (a) : 9 samples 

are correctly predicted as B and 1 sample is incorrectly predicted as A, which 

corresponds to the Precision (accuracy) of grade “B” on the training set in Table 2.1 

being 0.92; As shown in Fig. S2 (b), grade A: 0 samples were correctly predicted as A, 

1 sample was incorrectly predicted as D, and 1 sample was incorrectly predicted as E. 

Grade B: 1 sample is incorrectly predicted as C and 2 samples are incorrectly predicted 

as D. Grade C: 2 samples are correctly predicted to be C, and so on. 

 

 

Figure. S3. Two-feature ablation experiments of BET to Ni-Co ratio for (a) MLP model and (b) 

RF model 

Note: We conducted virtual ablation experiments on two highly interactive features-



“Nickel-cobalt ratio” (feature index 0) and “BET” (index 7)-using two different 

models (MLP and RF), and employed SHAP analysis to validate the quantitative 

consistency of feature interaction importance. For the MLP model, the baseline test 

performance reached R² = 0.9147 and RMSE = 150.67. When both features were set 

to zero, model performance markedly deteriorated to R² = 0.3708 and RMSE = 409.23, 

resulting in ΔR²  = 0.5439 and ΔRMSE = 258.56. Meanwhile, the sum of the 

absolute SHAP values for these two features across the top 50 samples, computed using 

KernelExplainer, was 145.79-closely matching the increase in RMSE-indicating that 

SHAP contributions can approximate the impact of feature interaction on prediction 

error. The ablation results for the Random Forest model showed a similar trend. The 

baseline performance was R² = 0.9419 and RMSE = 124.37, which dropped sharply 

to R² = 0.3263 and RMSE = 423.47 after the two features were removed, leading to 

ΔR² = 0.6156 and ΔRMSE = 299.10. These results further confirmed the critical 

importance of these two features within the RF model. The outcomes of both ablation 

experiments and SHAP-based interaction analysis were highly consistent at the 

quantitative level-the SHAP interaction intensity (~145.8) and the corresponding 

increases in RMSE (≈258.6 and ≈299.1) were strongly aligned, substantiating the 

reliability of SHAP interaction importance in interpretable machine learning. This 

experiment. clearly demonstrates the pivotal role of the “Nickel–Co ratio” and BET 

surface area as high-interaction features in predicting specific capacitance (Csp). These 

findings provide a robust basis for experimental decision-making guided by model 

outputs and offer quantitative direction for researchers in selecting key adjustable 

parameters and conducting targeted experiments during practical material design and 

optimization. 

  



Table S2. Optimal hyperparameter configurations of various models in Anaconda 

MLP GB RF SVM RFC GBC 

hidden_layer_sizes:

(150) 

activation:'logistic' 

solver:'lbfgs' 

max_iterations:135

00 

learning_rate:0.000

1 

tol:1e-07 

alpha:1e-08 

early_stopping:Fals

e 

validation_fraction:

0.1 

n_iter_no_change:5 

n_estimators

:461 

learning_rat

e:0.3 

max_depth:1

1 

min_samples

_split:3 

min_samples

_leaf:2 

max_feature

s:'sqrt' 

max_depth:4

9 

min_samples

_split:2 

n_estimators:

15 

min_samples

_leaf:1 

bootstrap:Fa

lse 

max_features

:'sqrt' 

C:10000 

gamma: 

'auto' 

kernel:'rb

f' 

epsilon:1e

-05 

coef0:0.1 

shrinking:

True 

tol:0.0001 

n_estimators:1

12, 

max_features:

None 

max_depth:60 

min_samples_

split:4 

min_samples_l

eaf:1 

bootstrap:True 

n_estimators:

100 

learning_rate:

0.01 

max_depth:3 

min_samples_

split:2 

min_samples_

leaf:1 

subsample:0.4 

max_features:

1.0 

 

 

Figure. S4. Summary of MLP and RF importance rankings and corresponding histograms 

Note: The relative importance values of the attributes in the MLP model are divided 



by 10 to normalize them against the importance values of the attributes in the RF 

model. 

 

 

Figure. S5. (a) Trivariate-3D plots of with/without adhesive, current density vs. mass loading, and 

(b) trivariate-3D plots of with/without adhesive, substrate vs. mass loading 

Note: As shown in Fig. S4(a) and (b), the following observations can be made: (i) 

conventional nickel foam substrates exhibit a higher potential for accommodating 

greater mass loading; (ii) binder-free fabrication methods allow for a higher upper limit 

of mass loading, which is consistent with the improved loading capacity enabled by 

binder-free strategies; (iii) regardless of binder usage, the specific capacitance initially 

increases and then decreases with increasing mass loading, aligning with the 

understanding that optimal electrochemical performance requires a reasonable loading 

level; (iv) when binder is used, the rate capability first increases and then decreases 

with mass loading. This is attributed to the fact that at low mass loading, the electrode 

is thinner, facilitating easier electrolyte penetration and enhancing the contact efficiency 

between ions and electrolyte, which favors rate performance; whereas at high mass 

loading, the electrode becomes thicker, hindering electrolyte infiltration and reducing 

the accessibility of inner active sites, thereby lowering rate capability; (v) under binder-

free conditions, the rate capability exhibits the same trend as with binder usage, further 

confirming the validity and reliability of the modeling data. 

 



 

Fig. S6 (a) CV electrochemical testing and (b) XRD diffraction pattern characterization of 

NiCo2O4 samples 

Note: As shown in Fig. S5(a), the NiCo₂O₄ sample exhibits distinct pseudocapacitive 

behavior at moderate to low scan rates (5 mV s⁻¹–20 mV s⁻¹), with evident oxidation 

and reduction peaks observed at (0.2 V, 0.35 V) and (0.15 V, 0.4 V), respectively. In 

Fig. S5(b), the XRD pattern of the prepared sample displays characteristic diffraction 

peak positions and intensities that are consistent with the standard reference card for 

NiCo₂O₄: JCPDS PDF#73-1702, present a typical Fd3̅m disorderly spinel structure. 

Table S3. Comparison of properties of various NiCo₂O₄ electrode materials 

Materials Specific Capacitance Cyclic Stability Ref. 

NiCoO2/G@NF 1220 F g-1at 1A g-1 
80% after 5000 cycles at 

10A g-1 
1 

N-NiCoO 945.79 F g-1at 1A g-1 
93.3% after 5000 cycles at 

5 A g-1 
2 

Porous NiCoO 

nanowire 
1191.4 F g-1 at 1 A g-1 

86% after 3000 cycles at 

10 A g-1 
3 

NiCoO–EGO 530 F g-1 at 1 A g-1 
82% after 10000 cycles at 

5 A g-1 
4 

Nanostructured 

spinel NiCoO 
730 F g-1 at 1 A g-1 

92.23% after 5000 cycles 

at 50 mV -1 
5 

urchin-like 

nanostructure 

NiCoO 

423.9 F g-1 at 1.5 A g-1 
94% after 1500 cycles at 

7.5 A g-1 
6 

urchin-like NCO-

D 
580 F g-1 at 1 A g-1 

≈97% after 1000 cycles 

at 15 A g-1 
7 

E-NCO 

nanoarrays 
1360.7 F g-1 at 1 A g-1 

87.2% after 10000 cycles 

at 40 A g-1 
8 

Chestnut shell 

spherical NiCo2O4 
1538 F g-1 at 1 A g-1 

90.3% after 10000 cycles 

at 10 A g-1 
This work 



 

Fig. S7. Histogram of prediction results under different performances of MLP model 

Note: As shown in the Fig.S7, different performance outcomes and corresponding 

specific capacitance predictions of NiCo₂O₄ samples were obtained from MLP models 

trained with either fixed or varied Max_Iterations hyperparameters. Specifically, for 

the three groups with the same hyperparameter setting (Max_Iterations = 13500), where 

the R² values for the training and test sets were (0.96/0.84), (0.99/0.72), and (0.98/0.69), 

the significant overfitting (R² difference > 0.1) led to noticeable deviations between the 

predicted and experimental values. In contrast, for the two groups with R² values of 

(0.96/0.86) and (0.97/0.88), corresponding to Max_Iterations values of 13500 and 

14000 respectively, the prediction errors were smaller and the predicted values were 

closer to the actual value (1538), which can be attributed to the lower degree of 

overfitting (R² difference < 0.1) and thus a more reasonable generalization capability. 

These results indicate that reduced overfitting tends to enhance model prediction 

performance. Overall, all prediction errors fell within the RMSE ranges provided by 

the training and test sets. Based on this analysis, the following conclusions can be drawn: 

(i) the degree of overfitting between the training and test set R² values serves as a 

criterion to assess the reliability of the prediction results, and the same principle applies 

to cases of underfitting; (ii) the prediction error of the model can be estimated using the 



RMSE ranges from the training and test sets, in combination with the level of overfitting 

or underfitting, to comprehensively evaluate the credibility of the error range. In other 

words, without altering or fine-tuning key hyperparameters of the model (e.g., adjusting 

Max_Iterations from 13,500 to 14,000 as shown in the figure), a smaller degree of R² 

overfitting between the training and testing sets, along with a narrower RMSE gap, 

indicates higher reliability and accuracy of the model in predicting new samples. 

  



Supplementary Note 1: (i) Precision: The proportion of samples predicted to belong to 

a given class that actually belong to that class. For A, a precision of 0.80 means that 80% 

of the samples predicted as A are actually A. (ii) Recall: The proportion of actual 

samples from a given class that are correctly predicted by the model. For A, a recall of 

0.75 means that 75% of the actual A samples are correctly predicted. (iii) F1-score: The 

harmonic mean of precision and recall for a given class, providing a comprehensive 

evaluation of model performance. Support: The actual sample count for each class; 

accuracy: Similar to the R² value. (iv) Macro avg: The average precision, recall, and 

F1-score across all classes, without considering the sample count of each class. (v) 

Weighted avg: The weighted average of precision, recall, and F1-score across all classes, 

considering the sample count of each class. 

 

Supplementary Note 2: Univariate sensitivity analysis was conducted by repeatedly 

training the model on datasets in which the values of a single feature column were 

manually shuffled, and comparing the resulting R² scores with those obtained from the 

original unshuffled dataset using the same model configuration. A larger difference in 

R² score indicates a greater impact of the corresponding feature on model performance. 

In this study, the MLP model was used to evaluate the relative importance of the most 

influential feature-“With/without adhesive”-by shuffling its values in descending order. 

Under identical hyperparameter settings, the model’s R² score changed from 0.984 to 

0.999. Similarly, when the moderately important feature “mass loading” and the least 

important feature “current density” were shuffled using the same method, the R² scores 

changed to 0.997 and 0.991, respectively. Thus, the largest R² variation occurred when 

the binder feature was shuffled. Assuming model randomness is negligible, this analysis 

further confirms that the “binder” feature has the highest influence on the MLP model’s 

prediction performance compared to the other two attributes, which is consistent with 

the ranking shown in Figure 5(b). Similar tests were also performed on the RF model, 

and the results aligned with those shown in Figure 5(a); therefore, they are not discussed 

in detail here. 
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