Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supplementary Information for:

Electrochemical Performance of MoS₂, Sb₂S₃, and SnS Anodes in Sodium-Ion Batteries

Using a Conductive Polypyrrole-Carbon Black Composite and a Sustainable Binder

LBG

Ewelina Rudnicka^{1*}, Aleksandra Laska², Manuela Skowron¹ and Beata Kurc¹

¹ Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of

Technology, Berdychowo 4, 60–965 Poznan, Poland

² Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland

*Corresponding author: ewelina.rudnicka@put.poznan.pl

Parameter	PPyCB (this work)	PEDOT-based composites	PANI-based composites
Typical electronic conductivity	$\sim 10^{-1} - 10^{\circ} \text{ S} \cdot \text{cm}^{-1}$ (CB-enhanced)	${\sim}10^{-2}-10^{-1}~S{\cdot}cm^{-1}$	$\sim 10^{-2} - 10^{-1} \text{ S} \cdot \text{cm}^{-1}$
Structural stability during cycling	Good (stable network, low R_CT increase)	Moderate (PEDOT:PSS swelling, degradation)	Limited (fragile at low/high potentials)
Compatibility with aqueous binders	High	Moderate	Low-Moderate
Reported Na-ion capacity retention	22–23% after 100 cycles (SnS/MoS ₂)	~10–20% (literature values vary)	Often below 15%
SEI behavior and interfacial uniformity	Uniform SEI (confirmed by EDS)	Often unstable SEI growth	Susceptible to parasitic reactions
Processing environment	Water-based, pH- neutral	Typically requires acidic or surfactant system	Acidic, less eco- friendly
Mechanical flexibility and film-forming	Good	Moderate	Brittle at high loadings

Table S1 Comparison of conductive polymer-based composites used in Na-ion battery electrodes²³⁻²⁷

Fig. S1 Arrhenius plot of the half-cell with SnS anode

Fig. S2 Arrhenius plot of the half-cell with MoS₂ anode

Fig. S3 Arrhenius plot of the half-cell with Sb₂S₃ anode

Fig. S4 The $log(\sigma)=f(100/T)$ dependency for 0.8 M NaPF₆ in EC:DMC (1:1 w/w) electrolyte

Fig. S5 Bode magnitude and phase plot for MoS_2 anode at (a) 30 °C; (b) 35 °C; (c) 40 °C; (d) 45 °C; (e) 50 °C; (f) 55 °C

Fig. S6. Bode magnitude and phase plot for SnS at (a) 25 °C; (b) 30 °C; (c) 35 °C; (d) 40 °C; (e) 45 °C; (f) 50 °C; (g) 55 °C; (h) comparison of Z_{phz} at different temperatures; (i) comparison of Z_{mod} at different temperatures.

Fig. S7. Bode magnitude and phase plot for Sb₂S₃ at (**a**) 25 °C; (**b**) 30 °C; (**c**) 35 °C; (**d**) 40 °C; (**e**) 45 °C; (**f**) 50 °C; (**g**) 55 °C; (**h**) comparison of Z_{phz} at different temperatures; (**i**) comparison of Z_{mod} at different temperatures.

The Bode plots presented in Fig. S6 (SnS) and Fig. S7 (Sb₂S₃) allow to analyze the changes of impedance properties of these materials in the temperature range from 25 °C to 55 °C. With increasing temperature, a decrease in impedance modulus (Z_{mod}) is observed, suggesting increased electrical conductivity for the SnS anode (Fig. S6i). The characteristic change of Z_{mod} indicates an improvement in charge carrier mobility at higher temperatures. Similar to SnS, the impedance modulus decreases for Sb₂S₃ (Fig. S7i) with temperature, but this decrease can be more noticeable or less intense depending on the electronic structure and transport properties. It is possible that the conductivity of Sb₂S₃ increases to a greater extent than SnS, if the impedance decreases faster.

It is worth noting that if the Z_{mod} for Sb₂S₃ decreases faster than for SnS, it means that Sb₂S₃ shows better conductivity at higher temperatures. If the Z_{mod} decrease in SnS is slower, then this material may be more electrically stable under changing temperature conditions.

The phase angle (Z_{phz}) for SnS (Fig. S6h) changes with temperature, indicating the influence of temperature on the capacitive and resistive properties of the material. It is possible that SnS maintains a more stable impedance profile, suggesting that there are no significant

changes in the charge transport mechanism. If the phase angles change more for Sb₂S₃ (Fig. S7h) than for SnS, it indicates that Sb₂S₃ may have a more complex electrochemical response at different temperatures. The strong changes in Z_{phz} may indicate a reduction in capacitive effects and a greater dominance of electron transport mechanisms. If the changes in Z_{phz} for Sb₂S₃ are more abrupt than for SnS, it suggests a greater sensitivity of Sb₂S₃ to temperature. If SnS exhibits a more stable phase angle profile, it could mean that its dielectric properties remain more predictable over a wide temperature range.

SnS may have better impedance stability, meaning its electrochemical properties change less with temperature. Sb₂S₃ may have better conductivity at higher temperatures, but at the cost of greater phase angle variability, which may affect its use in devices requiring stable parameters.

CHARACTERISTIC	SnS	Sb ₂ S ₃
Impedance modulus (Z _{mod})	Decreases gradually with temperature	Decreases more rapidly, suggesting better conductivity
Phase angle (Z _{phz})	More stable, smaller changes	Larger changes, more dynamic response to temperature
Thermal stability	Higher – smaller property changes	Lower – larger impedance changes
Electrical conductivity	May be lower at higher temperatures	Better conductivity at higher temperatures
Applications	Stable photovoltaic cells, thermoelectric materials	Sensors, electrochemical devices requiring higher reactivity

 Table S2 Comparison of two anode materials