Supporting Information for:

Construction of waffle-like NS-ZIF@V₂CT_x heterostructures for

high-performance potassium ion batteries

Yue Qin ^a, Weifang Zhao ^b*, Ting Wang ^a, Wenlong Liu ^a, Tengfei Zhou ^c, Xiaole Han ^a, Yi Liu ^a, Juncheng Hu ^a, Qingqing Jiang ^a*

^a Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China

^b Ganfeng Li Energy Technology Co., Ltd., Xinyu 338000, Jiangxi, China

^c Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China

1. Experimental Method

1.1 Materials

The materials used here include:V₂AlC (98 wt%, 400 mesh, Ichiyi Technology Co. Ltd.), TMAOH (tetramethylammonium hydroxide, 25 wt%, Macklin Co. Ltd.), methanol (99.5%), polyvinylpyrrolidone (PVP, GR), and ascorbic acid were purchased from Sinopharm Chemical Reagent Co. HCl (36-38 wt%), Zn(NO₃)₂-6H₂O (99.99%), Co(NO₃)₂-6H₂O (99.99%), dimethylimidazole (98%), potassium metal from potassium ion batteries (K,99.9%),1,2dimethoxyethane (DME, AR, 99.5%) and potassium bis(fluorosulfonyl)imide (KFSI, AR, > 95%) were purchased from Aladdin Industries.

1.2 Materials characterization

The morphology of the resulting products was observed and photographed using a scanning electron microscope (SEM) (Hitachi SU-8010, Japan) at a deceleration voltage of 1.5 kV. Transmission electron microscopy images were taken using a JEOL JEM-2010 LaB₆ high-resolution transmission electron microscope (200 kV). High resolution transmission electron microscope (200 kV). High resolution transmission electron microscope at 200 kV. X-ray diffraction (XRD) patterns were recorded using a Bruker AXS D8 Advance X-ray diffractometer with a cu-k- α radiation source ($\lambda = 1.5406$ Å). Raman spectra were collected using a DXR Raman confocal microscope (Thermo Fisher Scientific, USA), 532 nm @10 mW laser. X-ray photoelectron spectroscopy (XPS) measurements were performed using Al K α radiation as the excitation source (VG Multilab 2000 Photoelectron Spectrometer, 2 × 10-6 Pa vacuum).

1.3 Electrochemical characterization

A CR2032 button cell was selected to test various electrochemical properties. The mixtures consisted of prepared material (70 wt%), polyvinylidene fluoride (PVDF, 10 wt%) and cochineal black (20 wt%). The mixtures were then applied to a copper foil (collector) to prepare V₂CT_x, ZIF@V₂CT_x and NS-ZIF@V₂CT_x electrodes (mass loadings of 0.2 mg cm^{-2} and diameters of 8 mm). Potassium metal foil was used as the reference electrode for the assembly of the semi-PIBs, and polypropylene membranes (Celgard 2400) were used for the separator. The electrolyte was selected as 3 M KFSI (DME) and 200 µL of each CR2032 button cell was used. Charge-discharge tests and GITT tests were performed using a NEWARE battery tester (0.01-3 V, room temperature, 0.1 mV s⁻¹ ~ 1.0 mV s⁻¹) and EIS spectra (5 mV, 0.01 Hz ~ 100 kHz) tests were performed on the IviumStathtype electrochemical workstation.

Figure S1. SEM images of (a) V₂CT_x, (b) NS-ZIF@V₂CT_x, TEM images of (c) NS-ZIF@V₂CT_x, and (d) NS-ZIF

Figure S2. TEM images (a) ZIF@V₂CT_x, (b) NS-ZIF@V₂CT_x, (c) ANS-ZIF@V₂CT_x, SAED diffraction pattern of (d) ZIF@V₂CT_x, (e) NS-ZIF@V₂CT_x, (f) ANS-ZIF@V₂CT_x.

Figure S3. EDS elemental analysis map of NS-ZIF@V₂CT_x.

Figure S4. (a) TEM image, (b) EDS image of ZIF@V₂CT_x.

Figure S5. N₂ adsorption-desorption isotherms and pore size distribution of (a) V_2CT_x , and (b) $ZIF@V_2CT_x$.

Figure S6. Thermogravimetric curve of NS-ZIF@V₂CT_x.

Figure S7. (a) Cycling performance of V_2CT_x , ZIF@ V_2CT_x , NS-ZIF@ V_2CT_x , and NS-ZIF@ V_2CT_x electrodes at current density of 100 mA g⁻¹, Cycling performance of ANS-ZIF@ V_2CT_x electrode at (b) 1000 mA g⁻¹ and (c) 2000 mA g⁻¹.

Figure S8. GITT plots of V₂CT_x, NS-ZIF@V₂CT_x and ZIF@V₂CT_x.

Figure S9. The calculated diffusion coefficient (D_{K}^{+}) of ZIF@V_2CT_x electrode.

 $\label{eq:Figure S10.} \mbox{(a) SEM image of NS-ZIF} @V_2CT_x \mbox{ electrode and (b) TEM image of SEI layer after} \\ 200^{th} \mbox{ charge/discharge cycles.}$

Figure S11. (a) SEM, (b) TEM, (c) EDS of ANS-ZIF@V₂CT_x samples.

Figure S12. (a) XRD patterns, (b) Raman spectra, (c) FT-IR spectra of V_2CT_x , ZIF@ V_2CT_x , NS-ZIF@ V_2CT_x , and NS-ZIF@ V_2CT_x .

Figure S13. XPS data for ANS-ZIF@V₂CT_x sample of (a) XPS survey, (b) C 1s, (c) O1s, (d) V 2p, (e) Zn 2p, and (f) Co 2p spectrum.

Figure S14. (a) CV curves, (b) GCD profiles, (c) GDV profiles, (d) CV curves at different sweep speeds, (e) anode peaks corresponding to the b-value, and (f) capacitive contributions of ANS- $ZIF@V_2CT_x$ electrode.

Figure S15. (a) GITT test, (b) the calculated diffusion coefficient (D_K^+) of ZIF@V₂CT_x electrode.

Figure S16. Plots of EIS data for (a) 0 cycles of EIS, (b) after 20 cycles of, and (c) the simulated R_{ct} , and R_{SEI} values.