Supporting Information

Atomically Dispersed Fe/Zn Synergy on Sulfur-Modified Nitrogen-

Doped Carbon for Boosting Oxygen Reduction Activity

Ting Wang,^a Zongge Li,^{*a} Wenjun Kang,^a Rui Li,^a Konggang Qu,^a Lei Wang,^a Fanpeng Meng^{*a} and Haibo Li^{*a}

^a Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059 P. R. China.

*Correspondence authors. Email: lizongge@lcu.edu.cn; mengfanpeng@lcu.edu.cn; haiboli@mail.ustc.edu.cn.

Fig. S1. (a) The surface area and (b) pore size of Fe_1Zn_1 -NC, Fe_1Zn_1 -SNC-I, Fe_1Zn_1 -SNC-II and Fe_1Zn_1 -SNC-III.

Fig. S2. CV curves in N_2 and O_2 of Fe_1Zn_1 -NC, Fe_1Zn_1 -SNC-X (X = I, II, III) and Pt/C.

Fig. S3. Site density of (a) Fe_1Zn_1 -NC and (b) Fe_1Zn_1 -SNC-II through reversible nitrite poisoning in a 0.5 M acetate buffer at pH=5.4.

Fig. S4. LSV curves tested on the RRDE for all catalysts in an O_2 -saturated 0.1 M KOH at 1600 rpm.

Fig. S5. LSV curves of (a) Fe_1Zn_1 -NC, (b) Fe_1Zn_1 -SNC-I, (c) Fe_1Zn_1 -SNC-II, (d) Fe_1Zn_1 -SNC-III and (e) Pt/C at different rotation speeds. Corresponding K-L plots of (g) Fe_1Zn_1 -NC, (h) Fe_1Zn_1 -SNC-I, (i) Fe_1Zn_1 -SNC-II, (j) Fe_1Zn_1 -SNC-III and (j) Pt/C.

Fig. S6. Equivalent circuit corresponding to the EIS spectra.

Fig. S7. Long-term cycling stability via an accelerated durability test (ADT).

Fig. S8. (a) EDS mapping, (b) XPS N 1s spectra, (c) S 2p, (d) Fe 2p and (e) Fe 2p were examined after 5000 cycles of Fe_1Zn_1 -SNC-II.

Fig. S9. (a) OER polarization curves and (b) Tafel plots of Fe_1Zn_1 -NC, Fe_1Zn_1 -SNC-I, Fe_1Zn_1 -SNC-II, Fe_1Zn_1 -SNC-III, and IrO_2 .

Fig. S10. Bader charge of Fe and Zn atoms in FeN_4 -Zn N_4 -NC and FeN_4 -Zn N_4 -SNC.

Fig. S11 (a) Open-circuit voltage plots, inset graphic shows voltage values. (b) Specific capacity curves at a current density of 10 mA cm⁻². (c) Galvanostatic discharge curves at various current densities. (d) Discharge polarization plots and power density curves and (e) charge–discharge cycling performance of the Zn-air battery assembled with Fe_1Zn_1 -NC.

Elements	Fe (wt. %)	Zn (wt. %)
Fe ₁ Zn ₁ -NC	0.93	9.23
Fe ₁ Zn ₁ -SNC- I	1.24	7.66
Fe ₁ Zn ₁ -SNC- II	1.48	7.95
Fe ₁ Zn ₁ -SNC- III	1.44	7.77

 Table S1. Composition of various samples obtained using ICP analysis.

 Flements
 Fe (wt

	Shell	N^a	R(Å) ^b	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0 (\mathrm{eV})^d$	R factor
Fe foil	Fe-Fe	8.0*	2.48 ± 0.02	0.0069	6.5 ± 2.6	0.0072
E. O	Fe-O	5.9 ± 0.2	1.97 ± 0.03	0.0129		0.0089
Fe ₂ O ₃	Fe-Fe	12.8 ± 0.7	3.09 ± 0.04	0.0354	4.9 ± 0.4	
FePc	Fe-N	4.2 ± 0.3	1.99 ± 0.02	0.0085	3.1 ± 0.7	0.0069
Fe ₁ Zn ₁ -SNC-II	Fe-N	4.1 ± 0.2	1.99 ± 0.03	0.0157	3.3 ± 0.2	0.0125

Table S2. EXAFS fitting parameters at the Fe K-edge for different structures.

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. S_0^2 was set to 1.063, according to the experimental EXAFS fit of metal foil reference by fixing *N* as the known crystallographic value.

	Shell	Na	R(Å) ^b	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0 (\mathrm{eV})^d$	R factor
Zn foil	Zn-Zn	6*	2.64 ± 0.02	0.0124	2.7 ± 1.3	0.0146
7.0	Zn-O	6.2 ± 0.3	1.95 ± 0.02	0.0034	3.5 ± 0.9 0.0225	
ZnO	Zn-Zn	12.4 ± 0.2	3.25 ± 0.03	0.0181		0.0225
ZnPc	Zn-N	4.1 ± 0.1	1.99 ± 0.01	0.0056	6.9 ± 0.5	0.0167
Fe ₁ Zn ₁ -SNC-II	Zn-N	3.8 ± 0.3	2.01 ± 0.02	0.0067	7.9 ± 1.6	0.0157

Table S3. EXAFS fitting parameters at the Zn K-edge for different structures.

^{*a*}*N*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. S_0^2 was set to 1.050, according to the experimental EXAFS fit of metal foil reference by fixing *N* as the known crystallographic value.

	,	
Sampla	Site density (mol g ⁻	Site density (µmol g⁻
Sample	¹)	1)
Fe ₁ Zn ₁ -NC	0.75×10 ¹⁹	12.4
Fe ₁ Zn ₁ -SNC-II	0.9×10 ¹⁹	14.9

Table S4. Site density of Fe₁Zn₁-NC and Fe₁Zn₁-SNC-II.

Catalysts	$R_{s}\left(\Omega\;cm^{-2}\right)$	$R_{ct} \left(\Omega \ cm^{-2}\right)$	CPE-T	CPE-P
Fe ₁ Zn ₁ -NC	7.098	59.72	5.29E-9	0.990
Fe ₁ Zn ₁ -SNC-I	12.12	60.87	2.95E-9	1.019
Fe ₁ Zn ₁ -SNC-II	7.277	53.52	4.44E-9	0.970
Fe ₁ Zn ₁ -SNC-III	9.623	59.54	2.39E-9	1.010

Table S5. The simulated equivalent circuit data of the catalysts.

Catalysts	E _{1/2} (V)	OCV (V)	Power density (mW cm ⁻²)	Specific capacity (mAh g_{Zn}^{-1})	Tafel plots (mV dec ⁻¹)
This work	0.871	1.58	228	804	78.69
Pt/C in this work	0.849	1.49	185	762	91.95
NPS-HPCNF ^[1]	0.86	1.51	210	795	67.4
Zn/Fe-NC ^[2]	0.875	1.46	186	815	-
A-MnO2/NSPC-2 ^[3]	0.87	1.54	181	816	91
Fe/Cu-N-C ^[4]	0.89	1.50	116.6	809.2	69.4
FeCu SACs/NC ^[5]	0.89	1.48	153	741.0	68.6
Fe-N,O/G ^[6]	0.86	1.55	164.7	-	90
Co ₃ S ₄ /FeS@CoFe/NC ^[7]	0.872	1.34	170	816.3	45
Fe SAs/NG ^[8]	0.883	1.51	272.6	798	91.7
Fe@NC-2-900 ^[9]	0.86	1.50	198	867	90.1
Co ₃ O _{4-x} @N–C-2 ^[10]	0.845	1.524	105.2	799.5	73.1

 Table S6. Performance comparison of non-noble metal catalysts reported in recent

 literature

- 1. X. Xu, H. Wu, Y. Yan, Y. Zheng, Y. Yan, S. Qiu, T. Liang, C. Deng, Y. Yao, J. Zou and M. Liu, *Adv. Energy Mater.*, 2025, **15**, 2405236.
- 2. C. Fu, X. Qi, L. Zhao, T. Yang, Q. Xue, Z. Zhu, P. Xiong, J. Jiang, X. An, H. Chen, J. S. Chen, A. Cabot and R. Wu, *Appl. Catal.*, *B*, 2023, **335**, 122875.
- L. Huo, M. Lv, M. Li, X. Ni, J. Guan, J. Liu, S. Mei, Y. Yang, M. Zhu, Q. Feng, P. Geng, J. Hou, N. Huang, W. Liu, X. Y. Kong, Y. Zheng and L. Ye, *Adv. Mater.*, 2024, **36**, 2312868.
- 4. W. Zhang, B. Feng, L. Huang, Y. Liang, J. Chen, X. Li, Z. Shi and N. Wang, *Appl. Catal.*, *B*, 2024, **358**, 124450.
- 5. H. Liu, L. Jiang, Y. Wang, X. Wang, J. Khan, Y. Zhu, J. Xiao, L. Li and L. Han, *Chem. Eng. J.*, 2023, **452**, 138938.
- 6. Y. Li, Y. Ding, B. Zhang, Y. Huang, H. Qi, P. Das, L. Zhang, X. Wang, Z.-S. Wu and X. Bao, *Energy Environ. Sci.*, 2023, **16**, 2629-2636.
- 7. Y. Tan, Y. Wang, A. Li, X. Jiang, Y. Zhang and C. Cheng, *J. Energy Chem.*, 2024, **96**, 568-577.

- 8. Y. Deng, Y. Lin, M. Zhang, Y. Lu, W. Zhang, W. Zhang, Z. Zhang, M. Xiang, H. Gu and J. Bai, *Int. J. Hydrogen Energy*, 2024, **65**, 905-911.
- 9. Z. Luo, L. He, J. Wu, Y. Tian, M. Yang, X. Liu, R. Zheng and D. Zhang, *ChemSusChem*, 2025, **18**, e202401552.
- 10. Y. Wang, R. Gan, Z. Ai, H. Liu, C. Wei, Y. Song, M. Dirican, X. Zhang, C. Ma and J. Shi, *Carbon*, 2021, **181**, 87-98.