Supporting Information

Polycarbonate-Based Solid-State Sodium Batteries with Inclusion of NaAlO₂ Microparticle Additives

Kenza Elbouazzaoui¹, Charles Aram Hall¹, Kristina Edström¹, Jonas Mindemark¹, Daniel Brandell^{1,*}

¹Department of Chemistry – Ångström Laboratory, Uppsala University, Box 538, SE-751 21, Uppsala, Sweden

*Corresponding author: <u>Daniel.Brandell@kemi.uu.se</u>

Figure S1. Photograph of PTMC:LiTFSI CPE with 20 wt% NAO particles.

Figure S2. (a) XRD patterns of the as-synthesized γ -NAO compared to the synthesized LAO previously reported in Ref. 1; (b) Representation of the crystal structure of γ -NAO using Vesta software.² The grey, blue and red balls represent Na, Al, and O atoms, respectively. Na and Al atoms are centered in grey and blue tetrahedra, respectively, sharing corners at the oxygen atoms.

Figure S3. SEM images of the as-synthesized NAO particles.

Figure S4. Cross-section SEM image of the PTMC:NAO CPE film at 20 wt% of NAO loading.

Table S1. Comparison of ionic conductivity and Na⁺-transference number of different Na-based polymer-ceramic composite electrolytes.

СРЕ	Ionic conductivity (S cm ⁻¹)	Transference number	Temperature (°C)	Ceramic filler nature	Particle size	Ref.
PTMC:20 wt% NAO	1.44 × 10 ⁻⁶	0.9	60	Passive	~ 5 µm	This work
[PEO:NaTFSI]+5 wt% SiO ₂	1.1 × 10 ⁻³	0.51	80	Passive	7 nm	3
[PEO:NaClO ₄]+25	5.6×10^{-4}	NA	60	Active	50-200	4
wt% Na ₃ Zr ₂ Si ₂ PO ₁₂					nm	
[PEO:NaTFSI]+50	2.8×10^{-3}		80	Active	~ 500	5
wt%		NA			nm	
$Na_{3\cdot4}Zr_{1\cdot8}Mg_{0\cdot2}Si_2PO_{12}$						
[PEO:NaClO ₄]+10wt	3.95×10^{-4}	0.34	60	Passive	~ 300	6
% β- Al ₂ O ₃					nm	
[PEO:NaClO ₄]+5 wt% TiO ₂	2.62 × 10 ⁻⁴	NA	60	Passive	3.4 nm	7

References

- 1 K. Elbouazzaoui, A. Mahun, V. Shabikova, L. Rubatat, K. Edström, J. Mindemark and D. Brandell, *Adv. Energy Mater.*, 2025.
- 2, https://jp-minerals.org/vesta/en/download.html.
- J. Serra Moreno, M. Armand, M. B. Berman, S. G. Greenbaum, B. Scrosati and S. Panero, *J. Power Sources*, 2014, **248**, 695–702.
- 4 X. Yu, L. Xue, J. B. Goodenough and A. Manthiram, *ACS Mater. Lett.*, 2019, 1, 132–138.
- 5 Z. Zhang, K. Xu, X. Rong, Y.-S. Hu, H. Li, X. Huang and L. Chen, *J. Power Sources*, 2017, **372**, 270–275.
- Y. Yao, Z. Liu, X. Wang, J. Chen, X. Wang, D. Wang and Z. Mao, J. Mater. Sci., 2021, 56, 9951–9960.
- 7 Y. L. Ni'mah, M.-Y. Cheng, J. H. Cheng, J. Rick and B.-J. Hwang, *J. Power Sources*, 2015, **278**, 375–381.