Supporting Information

Engineering atomic-scale synergy of Ni and Mn dual-atom catalysts for highly efficient CO₂ electroreduction

Xin Cui,^a Yang Chen,^{a,*} Xiaodong Sun,^a Ying Sun,^a Hui Li,^{b,c} Tianyi Ma^{b,c*}

^a Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China

^b Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia

^c ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC 3000, Australia

*Corresponding authors

E-mail addresses: yangchen@lnu.edu.cn (Y. C), tianyi.ma@rmit.edu.au (T. M)

Experimental Section

Chemicals and reagents

Manganese (II) nitrate (Mn(NO₃)₂·4H₂O, 98%, AR, Macklin); nickel (II) nitrate hexahydrate (Ni(NO₃)₂·6H₂O, 99%, AR, AEX); zinc (II) nitrate hexahydrate (Zn(NO₃)₂·6H₂O, 99%, AR, AEX); 2-methylimidazole (2-MeIM, Aladdin); lsopropyl alcohol (AR, Tianjin Fuyu Fine Chemical Co., Ltd); Potassium bicarbonate (KHCO₃, AR, Tianjin DaMao Chemical Regent Factory); Methylalcohol (CH₃OH, Yongda Chemical Regengt Co., Ltd); Ethanol (C₂H₅OH, AR, Sinopharm Chemical Reagent Co., Ltd); Nafion solution (5.0 wt%, D520), Nafion membrane (N-117, Sigma-Aldrich); carbon paper (Maya Reagent). All chemicals were used directly in the experiments without any further treatment.

The calculation of TOF

Calculate the turnover frequency (TOF, h⁻¹) of the sample based on the following formula:

$$TOF = \frac{JS/NF}{m_{cat}\omega/M_{metal}} \times 3600$$

J: partial current density for CO production (A/cm²);

S: geometric surface area of the working electrode (cm²);

N: the number of electron transfer for CO production, which is 2 for CO;

F: Faradaic constant, 96485 C mol⁻¹;

 m_{cat} : the mass of the catalyst on the electrode(g);

ω: metal loading in the catalyst based on ICP-OES results;

 M_{metal} : atomic mass of Ni (58.69 g mol⁻¹) for Ni₁-NC, atomic mass of Mn (55.00 g mol⁻¹) for Mn₁-NC, and atomic mass of 57.88 g mol⁻¹ for Ni₁Mn₁-NC (based on the ratio of Ni and Mn).

Fig. S1. (a, b) SEM image of the NC.

Fig. S2. (a, b) SEM image of Ni_1Mn_1 -NC. (c) HRTEM image of Ni_1Mn_1 -NC. (d) AC-HAADF-STEM image of Ni_1Mn_1 -NC. (e) intensity spacing diagram.

Fig. S3. (a) SEM image of Ni₁-NC. (b) AC-HAADF-STEM image of Ni₁-NC. (c) HR TEM image of Ni₁-NC. (d) EDS mappings of the Ni₁-NC.

Fig. S4. (a) SEM image of Mn_1 -NC. (b) AC-HAADF-STEM image of Mn_1 -NC. (c) HRTEM image of Mn_1 -NC. (d) EDS mappings of the Mn_1 -NC.

Fig. S5. (a) N_2 adsorption and desorption isotherm of NC. (b) Pore size distribution of NC.

Fig. S6. XPS spectra for the survey scan of (a) Ni_1Mn_1 -NC. (b) Ni_1 -NC. and (c) Mn_1 -NC.

Fig. S7. LSV curves measured in Ar-saturated 0.5 M KHCO₃ electrolyte.

Fig. S8. The ¹H NMR spectra of liquid products on Ni_1Mn_1 -NC, Ni_1 -NC, and Mn_1 -NC at -0.7 V vs. RHE.

Fig. S9. FE_{CO} of the NC at different potentials performed in 0.5 M KHCO₃ electrolyte.

Fig. S10. The FE_{CO} of Ni₁Mn₁-NC with Ni:Mn molar ratios of (a) 1.5:1 and (b) 1:1.5.

Fig. S11. (a) SEM. (b-c) AC-HAADF-STEM. (d) Intensity spacing diagram. (e) EDS mapping of Ni_1Mn_1 -NC catalyst after reaction.

Fig. S12. (a) Ni 2p XPS spectra. (b) Mn 2p XPS spectra. (c) XPS spectra for the survey scan. (d) N 1s XPS spectra of the Ni₁Mn₁-NC catalyst after reaction.

Fig. S13. The CV curves of Ni₁Mn₁-NC, Ni₁-NC, and Mn₁-NC at different scan rates.

	Ni	Mn	BET	Pore	Total pore
Samples	loading	loading	surface area	diameter	volume
	(wt. %)	(wt. %)	(m ² g ⁻¹)	(nm)	(cm ³ g ⁻¹)
Ni ₁ Mn ₁ -NC	0.71	0.40	1697.0	3.77	0.90
Ni ₁ -NC	0.61	-	1578.4	3.79	0.88
Mn ₁ -NC	-	0.45	1488.8	3.78	0.85
N-C	-	-	2009.5	3.77	1.17

Table S1. Physiochemical properties of the prepared Ni_1Mn_1 -NC, Ni_1 -NC, Mn_1 -NC and N-C.

Catalyst	Cathode electrolyt e	Potential (V vs. RHE)	FE _{CO} (%)	jco (mA cm ⁻²)	Stability (h)	Referenc e
Ni ₁ Mn ₁ -NC	0.5M KHCO ₃	-0.7	97	6.4	60	This work
Ni ₁ -NC	0.5M KHCO ₃	-0.7	75	3.0	-	This work
Mn ₁ -NC	0.5M KHCO ₃	-0.6	41	0.9	-	This work
Fe/Mn-NC	0.1M KHCO ₃	-0.6	94	~8.1	12	1
Co ₁ Mn ₁ -NC	0.5M KHCO ₃	-0.47	97.6	3.5	30	2
NiFe-DASC	0.5M KHCO ₃	-0.8	94.5	98	30	3
NiN ₃ @CoN ₃ -1#	0.1M KHCO ₃	-0.7	89	~3	-	4
Ni ₂ -NCNT	0.5M KHCO ₃	-1.4	81.6	76.2	52	5
FeMn-N-C	0.1M KHCO ₃	-0.5	80	~5	-	6
Fe ₂ Ni/NG	0.5M KHCO ₃	-0.6	60.9	3.4	12	7
Mn-NC	0.1M KHCO ₃	-0.8	81	1.75	10	8
Mn-N-C	0.1M KHCO ₃	-0.58	70	~1	-	9
NiPc	0.5M KHCO ₃	-0.7	93	2.2	10	10
NiSA-NGA	0.5M KHCO ₃	-0.8	90.2	5.8	6	11

Table S2. Performance comparison of various Ni-based single/dual-atom and Mn-based single/dual-atom catalysts for CO_2RR .

Reference

- C. Ma, H. Zhang, W. Kong, B. Shen and H. Lyu, *Environ. Funct. Mater.*, 2022, 1, 284-297.
- J. J. Pei, G. K. Zhang, J. W. Liao, S. F. Ji, H. Huang, P. Wang, P. F. An, S. Q. Chu and J. C. Dong, *J. Mater. Chem. A*, 2024, **12**, 13694-13702.
- Z. Zeng, L. Y. Gan, H. Bin Yang, X. Su, J. Gao, W. Liu, H. Matsumoto, J. Gong, J. Zhang, W. Cai, Z. Zhang, Y. Yan, B. Liu and P. Chen, *Nat. Commun.*, 2021, 12, 4088.
- Q. Zhang, D. Liu, Y. Zhang, Z. Guo, M. Chen, Y. Chen, B. Jin, Y. Song and H. Pan, *J. Energy Chem.*, 2023, 87, 509-517.
- X. M. Liang, H. J. Wang, C. Zhang, D. C. Zhong and T. B. Lu, *Appl. Catal. B* Environ., 2023, **322**, 122073.
- A. S. Varela, N. R. Sahraie, J. Steinberg, W. Ju, H.-S. Oh and P. Strasser, Angew. Chem. Int. Ed., 2015, 54, 10758-10762.
- T. Yue, Y. Chang, J. Liu, J. Jia and M. Jia, *ChemElectroChem*, 2021, 8, 4233-4239.
- Z. Yao, X. Zhan, Y. Ruan, W. Li, Y. Xu, Y. Chen, A. W. Robertson, R. Tao, S. Hong, L. Hao and Z. Sun, *Chem. Asian J.*, 2022, 17, e202200997.
- F. Pan, W. Deng, C. Justiniano and Y. Li, *Appl. Catal. B Environ.*, 2018, 226, 463-472.
- X. Wang, Y. Fu, D. Tranca, K. Jiang, J. Zhu, J. Zhang, S. Han, C. Ke, C. Lu and X. Zhuang, ACS Appl. Energy Mater., 2021, 4, 2891-2898.
- K. Mou, Z. Chen, X. Zhang, M. Jiao, X. Zhang, X. Ge, W. Zhang and L. Liu, Small, 2019, 15, 1903668.