## **Supporting Information**

## Synergistic Nitrogen-Doping and Carbon-Coating in N-MoSe<sub>2</sub>/C Nanoflowers Enable Ultra-high Discharge Capacity for Li-CO<sub>2</sub> Batteries

Dandan Zhu, Qingyang Dai, Xinyu Zhang, Jiacheng Yi, Yong Yang\*

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China \*Corresponding authors. E-mail addresses: <u>yychem@njust.edu.cn (Y</u>. Yang)



Fig. S1 EDS mapping images of N-MoSe $_2$ /C showing the elemental distributions of Mo, Se, N

and C.



Fig. S2 SAED patterns of  $MoSe_2$  and Carbon layer



Fig. S3 Carbon content of prepared samples.



Fig. S4 Pore size testing of corresponding prepared samples.

|                                    | Current     | Canacity              | Over      | Current               | Cut off                | Cualing   |      |
|------------------------------------|-------------|-----------------------|-----------|-----------------------|------------------------|-----------|------|
| C-41 1                             |             |                       |           | Jana de la            | Cut 011                | cyching   | D-f  |
| Calnode catalyst                   | density (mA | (mAn g <sup>+</sup> ) | potential | density               | capacity               | stability | Kel. |
|                                    | g-1)        |                       | (V)       | (mA g <sup>-1</sup> ) | (mAh g <sup>-1</sup> ) |           |      |
| Ru-O-Zr/Ce                         | 100         | 21075                 | 1.03      | 100                   | 1000                   | 167       | 1    |
| MnO <sub>X</sub> -CeO <sub>2</sub> | 100         | 13631                 | 1.49      | 100                   | 1000                   | 253       | 2    |
| CCGA                               | 100         | 7860                  | 1.53      | 100                   | 1000                   | 100       | 3    |
| Cu-Co <sub>4</sub> N@CC            | 100         | 31000                 | 1.32      | 200                   | 500                    | 131       | 4    |
| Ir-Te                              | 100         | 13247                 | 1.48      | 1000                  | 1000                   | 350       | 5    |
| IrRu/N-CNTs                        | 100         | 6228                  | <1.5      | 100                   | 500                    | >600      | 6    |
| RuCo NSs/CNT                       | 100         | 8057                  | 0.94      | 100                   | 1000                   | 44        | 7    |
| PdCu/N-CNF                         | 100         | 18500                 | 1.17      | 100                   | 1000                   | 270       | 8    |
| FeCoNiMnCuAl@C                     | 100         | 27664                 | 1.03      | 100                   | 1000                   | 134       | 9    |
| Ru/NS-G                            | 100         | 12,448                | 1.4       | 100                   | 1000                   | >100      | 10   |
| MoS <sub>2</sub> /CNT              | 100         | 8551                  | 1.24      | 100                   | 500                    | 142       | 11   |
| Mo <sub>3</sub> P/Mo               | 50          | 10577                 | 0.13      | 250                   | 500                    | 78        | 12   |
| MWCNT/Ru                           | 150         | 6531                  | 1.30      | 50                    | 500                    | 50        | 13   |
| MWCNT/RuNi                         | 200         | 15165                 | 1.13      | 200                   | 500                    | >80       | 14   |
| N-MoSe <sub>2</sub> /C             | 100         | 37720                 | 1.54      | 100                   | 500                    | 89        | This |
|                                    |             |                       |           |                       |                        |           | work |

Table S1. Performance comparison of typical reported cathode catalysts for Li-CO<sub>2</sub> batteries.



Fig. S5 The discharge performance of N-MoSe $_2$ /C at different atmosphere.



Fig. S6 Equivalent Circuit Model. Rs: Solution Resistance. Rct: Charge Transfer Resistance. CPE: Constant Phase Element. W0: Warburg Resistance



Fig. S7 The cycle performance of N-MoSe<sub>2</sub>/C assembled battery under the condition of 100 mA g<sup>-1</sup> current density and cut-off capacity of 500 mAh g<sup>-1</sup> test.



Fig. S8 HRTEM image of N-MoSe $_2$ /C nanoflowers after cycling.



Fig. S9 The cycle stability of (a) MoSe<sub>2</sub>/C, (b) N-MoSe<sub>2</sub> positive electrode under the condition of 100 mA g<sup>-1</sup> current density and cutoff capacity of 500 mAh g<sup>-1</sup>



Fig. S10 Optimized structural models: (a)  $MoSe_2(1 \ 0 \ 0)$  and (b) N-MoSe\_2(1 \ 0 \ 0).



Fig. S11 Structure models of Li with (a)  $MoSe_2$  and (b) N-MoSe\_2.

## **Supporting Reference**

- Q. Deng, Y. Yang, K. Yin, J. Yi, Y. Zhou, Y. Zhang, *Adv. Energy Mater.*, 2023, 13, 2302398.
- Q. Deng, Y. Yang, C. Mao, T. Wang, Z. Fang, W. Yan, K. Yin, Y. Zhang, *Adv. Energy Mater.*, 2022, **12**, 2103667.
- Q. Deng, Y. Yang, S. Qu, W. Wang, Y. Zhang, X. Ma, W. Yan, Y. Zhang, *Energy Storage Materials*, 2021, 42, 484-492.
- X. Ma, W. Zhao, Q. Deng, X. Fu, L. Wu, W. Yan, Y. Yang, *Journal of Power* Sources, 2022, 535, 231446.
- Y. Zhai, H. Tong, J. Deng, G. Li, Y. Hou, R. Zhang, J. Wang, Y. Lu, K. Liang, P. Chen, F. Dang, B. Kong, *Energy Stor. Mater.*, 2021, 43, 391-401.
- Z. Wang, B. Liu, X. Yang, C. Zhao, P. Dong, X. Li, Y. Zhang, K. Doyle-Davis, X. Zeng, Y. Zhang, X. Sun, *Adv. Funct. Mater.*, 2023, 33, 2213931.
- Y. Wang, J. Zhou, C. Lin, B. Chen, Z. Guan, A. M. Ebrahim, G. Qian, C. Ye, L. Chen, Y. Ge, Q. Yun, X. Wang, X. Zhou, G. Wang, K. Li, P. Lu, Y. Ma, Y. Xiong, T. Wang, L. Zheng, S. Chu, Y. Chen, B. Wang, C.-S. Lee, Y. Liu, Q. Zhang, Z. Fan, *Adv. Funct. Mater.*, 2022, **32**, 2202737.
- P.-F. Zhang, T. Sheng, Y. Zhou, Y.-J. Wu, C.-C. Xiang, J.-X. Lin, Y.-Y. Li, J.-T. Li, L. Huang, S.-G. Sun, Chem. Eng. J. 2022, 448, 137541.
- 9. J. Yi, Q. Deng, H. Cheng, D. Zhu, K. Zhang, Y. Yang, Small, 2024, 20, 2401146.
- Y. Qiao, J. Wu, J. Zhao, Q. Li, P. Zhang, C. Hao, X. Liu, S. Yang, Y. Liu, *Energy Storage Mater.*, 2020, 27, 133-139.
- C.-J. Chen, C.-S. Huang, Y.-C. Huang, F.-M. Wang, X.-C. Wang, C.-C. Wu, W.-S. Chang, C.-L. Dong, L.-C. Yin, R.-S. Liu, *ACS Appl. Mater. Interfaces*, 2021, 13, 6156-6167.
- 12. D. Na, R. K. Kampara, D. Yu, B. Yoon, S. W. Martin, I. Seo, *Mater. Today* Energy. 2023, **38**, 101418.
- 13. C. Wu, G. Qi, J. Zhang, J. Cheng, B. Wang, Small. 2023, 19, 2302078.
- 14. K. M. Naik, A. K. Chourasia, M. Shavez, C. S. Sharma, ChemSusChem. 2023, 16,

e202300734.