Supporting Information

Upcycling Waste PET to Oxygen-Rich Carbon Nanotubes for Highperformance Supercapacitor with Ultra-high Cycling Stability

Zheng Xu,[†] Zhezhe Zhou,[¶] Qiang Chen,^ΔXuesen Zeng,^η Jisheng Sun,[⊥] Ziqi Sun,^ζ Pingan Song, *¶ Rongjun Song*[†],

[†] Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, College of Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China

[¶]Centre for Future Materials, School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Queensland, Australia

 ^A Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
 ⁿ Centre for Future Materials, University of Southern Queensland, Toowoomba, Queensland, Australia

¹ Australia Sunlight Group Pty Ltd, Carole Park, Queensland, Australia

^c Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia

Corresponding author:

* E-mail:rongjunsong@nefu.edu.cn (R. J. Song)

* E-mail:pingan.song@usq.edu.au, pingansong@gmail.com (P. A. Song)

Contents:

Figs. S1-S5

Table S1-S3

Fig. S1. (a-c) EDS mapping of CNT-700.

Fig. S2. (a) SEM images and (b) TEM images of CNT-600. (c) SEM images and (d) TEM images of CNT-800.

Fig. S3. (a) N_2 adsorption-desorption isotherms of CNT-600, CNT -700 and CNT -800. (b) Pore size distributions of CNT -600, CNT -700 and CNT -800.

Fig. S4. The contributions of EDLC and PC of CNT-700 at various scan rates.

Fig. S5. (a) GCD curves at different current densities. (b) CV curves at various scanning rates.(c) Nyquist plots.

specific of office , our				
C 1s		O 1s		
C=C	53.59 at.%	C-OH	42.88 at.%	
C-0	34.78 at.%	O=C	51.22 at.%	
O=C	11.63 at.%	Chemisorbed O	5.90 at.%	

Table S1. Summary of the results of the fitting of the C 1s and O 1s high-resolution XPS spectra of CNT -700.

 Table S2. Specific surface area and pore structure parameters of the samples.

Sample	$S_{BET}(m^2 g^{-1})$	$V_t (cm^3g^{-1})$	D _{ave} (nm)
CNT-600	235.67	0.3124	5.3024
CNT-700	315.16	0.3452	4.3813
CNT-800	354.86	0.3848	4.3375

Table S3. Summary of the fitting results for $R_{\rm s}$ and $R_{\rm ct}$ of CNT at different temperatures.

Sample	$R_s(\Omega)$	$R_{ct}(\Omega)$
CNT-600	0.44	0.29
CNT-700	0.42	0.20
CNT-800	0.38	0.14