Supporting Information

The Balance of Structural Compatibility and Distortion in Titanium Source for the Preparation of High Performance Na₂Ti₆O₁₃ Anode

Qian Li, Changyan Hu, Yihua Liu, Ruoyang Wang, Feng Chen, Tingru Chen, Zhenguo Wu^{*}, Xiaodong Guo

School of Chemical Engineering, Sichuan University Chengdu 610065, P. R. China.

*Corresponding author. *E-mail address:* <u>Zhenguowu@scu.edu.cn</u>

Fig. S1. Crystal structures of two TiO₂ polymorphs based on their unit cells.

Fig. S2. Rietveld detailed map and laboratory XRD data of materials synthesized from different crystalline TiO₂ (a) A: R 100:0; (b) A: R 85:15; (c) A: R 75:25; (d) A: R 0:100. The black lines correspond to the observed data; the red lines indicate the calculated profiles, and the blue lines are the difference between the observed and calculated profiles. The green marks indicate the brag reflection of Na₂Ti₆O₁₃.

Fig. S3. Schematic crystal structure of Na₂Ti₆O₁₃: A: R 75:25 (left), A: R 0:100 (right).

Fig. S4. XPS spectra of Na₂Ti₆O₁₃ compound Ti 2p prepared from different titanium sources.

Fig. S5. Raman spectra of Na₂Ti₆O₁₃ (a) A: R-100:0, (b) A: R-85:15, (c) A: R-75:25, (d) A: R-0:100.

Fig. S6. SEM micrographs of NTO materials synthesized from different raw materials (a) A:

R-100:0, (b) A: R-85:15, (c) A: R-75:25, (d) A: R-0:100.

Fig. S7. Tapped density of NTO materials synthesized from different raw materials.

Fig. S8. Discharge-charge curves of (a) A: R-100:0, (b) A: R-85:15, (c) A: R-75:25, (d) A: R-0:100 at 1000 mA g⁻¹.

Fig. S9. The cycling performance of NTO at 2000 mA g^{-1} .

Fig. S10. The first three CV curves of NTO materials synthesized from different titanium sources (a) A: R-100:0, (b) A: R-85:15, (c) A: R-0:100 at 0.1 mv⁻¹ at 30°C.

Fig. S11. GITT curves of NTO prepared from different raw materials at 30°C and corresponding Na+ diffusion coefficients (D_{Na}^{+}) .

The diffusion coefficient was calculated using the following equation:

$$D_{Na^{+}} = \frac{4}{\pi\tau} \left(\frac{m_B V_m}{M_B S}\right)^2 \left(\frac{\Delta E_S}{\Delta E_{\tau}}\right)^2 \tag{1}$$

 D_{Na^+} represents the Na⁺ diffusion coefficient at the negative electrode. τ (s) denotes the duration of the applied current during the galvanostatic intermittent titration process. V_m (cm³ mol⁻¹) is the molar volume of the active material at the negative electrode, while m_B (g) and M_B (g mol⁻¹) correspond to the mass and molar mass of the active material, respectively. S (cm²) signifies the surface area of the electrode. ΔE_s and ΔE_{τ} represent the voltage change during the charging/discharging process and the voltage shift from the resting state to the equilibrium state, respectively.

Fig. S12. CV curves of different titanium NTO composite at different scan rates (a) A: R-100:0; (b) A: R-85:15; (c) A: R-75:25 and (d) A: R-0:100 at 30°C.

The value of b is calculated from the relationship between the response current (i) and the scan rate (v) at a certain potential:

$$i_{(v)} = av^b \tag{2}$$

$$logi_{v} = b \log v + \log a \tag{3}$$

The ratio of the two components is quantified according to the equation following:

$$i_{(v)} = k_{1(v)}v + k_{2(v)}v^{1/2}$$
(4)

$$i_{(v)}/v^{1/2} = k_{1(v)}v^{1/2} + k_{2(v)}$$
(5)

Fig. S13. The plot of the peak current (i) as a function of the square root of scanning rates (v^{1/2}) is calculated from CV curves in Figure S12 (a) A: R-100:0; (b) A: R-85:15; (c) A: R-75:25 and (d) A: R-0:100 at 30°C.

Fig. S14. The ratio of capacitance/diffusion ratio control contribution of NTO materials synthesized from different titanium sources (a) A: R-100:0; (b) A: R-75:25; (c) A: R-0:100 at 0.1 mv^{-1} at 30°C.

Polymorph	Space	a [Å]	b [Å]	c [Å]	Ti–O bond	Ti–Ti	
	group				lengths	interatomic	
					[Å]	distance [Å] ^a	
Rutile	P42/mnm	4.594	4.594	2.959	1.99 × 2	2.96 × 2 (ES)	
	(No.136)				1.95×4	3.57 × 8 (VS)	
Anatase	I41/amd	3.784	3.784	9.515	1.98 × 2	3.04 × 4 (ES)	
	(No. 141)				1.93 × 4	3.04 × 4 (ES)	

 Table S1. Crystallographic Data of Two TiO2 Polymorphs: Rutile-TiO2, Anatase-TiO2.

 ^{a}ES and VS denote edge and vertex sharing in the connection of the TiO_{6} octahedra, respectively.

	a [Å]	b [Å]	c [Å]	V [Å]	β [°]	R_{wp} (%)
A: R-100:0	15.111	3.745	9.170	512.512	99.055	5.57
A: R-85:15	15.117	3.745	9.165	512.352	99.125	8.45
A: R-75:25	15.132	3.744	9.151	511.743	99.228	9.84
A: R-0:100	15.156	3.739	9.156	511.570	99.585	10.10

Table S2. Rietveld refinement parameters of $Na_2Ti_6O_{13}$.

	BET specific Surface area	Pore volume	Average Pore size	
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)	
A: R-100:0	4.886	0.02539	2.078	
A: R-85:15	4.058	0.02355	2.321	
A: R-75:25	2.138	0.01095	2.050	
A: R-0:100	0.767	0.00877	4.576	

 Table S3. Summary Table of Detailed BET Parameters.

 Table S4. Calculated sodium ion diffusion coefficients for NTO of different titanium raw

 materials.

	Sodium ion diffusion
	$(cm^2 s^{-1})$
A: R-100:0	6.16*10 ⁻¹⁴ -3.54*10 ⁻¹¹
A: R-85:15	1.05*10 ⁻¹³ -3.55*10 ⁻¹¹
A: R-75:25	5.50*10 ⁻¹⁴ -3.31*10 ⁻¹¹
A: R-0:100	5.03*10 ⁻¹⁴ -3.29*10 ⁻¹¹