Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supplementary Material for:

A convenient method of ternary alloys design for CO₂-to-C₂H₄ electroreduction

Yiyang Xiao^{a,b}, Yingju Yang^{a,b,c,*}, Wei Liu^{a,b}, Jing Liu^{a,b,c}

^a State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology,

Wuhan 430074, China

^b School of Energy and Power Engineering, Huazhong University of Science and Technology,

Wuhan 430074, China

^c Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen 518000, China

*Corresponding to: yangyingju@hust.edu.cn

Fig. S1. Comparison of $\Delta G_{\text{COOH}*}$ and $\Delta G_{\text{HCOO}*}$ of M₁M₂@Cu catalysts with high CO₂RR selectivity.

Fig. S2. Optimized structures of intermediates of catalysts screening and CO_2 reduction over $M_1M_2@Cu$ surface. (a) Optimized structures of catalysts screening. (b) Intermediates of CO_2 electrochemical reduction to C_1 products over catalyst surface. (c) Intermediates of CO_2 electrochemical reduction to C_2H_4 over catalyst surface.

Fig. S3. Reaction network of C₁ products CO, CH₃OH and CH₄.

Fig. S4. Gibbs free energy diagram of C₁ products formation. (a) PtZn@Cu. (b) PdBi@Cu. (c) PtBi@Cu. (d) PtSn@Cu.

Fig. S5. Gibbs free energy diagram of C₂H₄ formation. (a) PtZn@Cu. (b) PdBi@Cu. (c) PtBi@Cu.(d) PtSn@Cu.

Fig. S6. XPS spectra of PtNi@Cu catalyst.

Fig. S7. XPS results of PtZn@Cu catalyst. (a) Survey spectra. (b) Cu 2p XPS spectra. (c) Zn 2p XPS spectra. (d) Pt 2p XPS spectra.

Fig. S8. SEM images of Cu, PtNi@Cu and PtZn@Cu. (a, b) Cu. (c, d) Pt@Ni@Cu. (e, f) PtZn@Cu.

Fig. S9. Particle size distribution of PtNi@Cu.

Fig. S10. Length of lattice fringe spacing on (111) surface.

Fig. S11. Faradic efficiency of PtZn@Cu catalysts with different metal proportion.

Fig. S12. Faradic efficiency of $Pt_1Zn_1@Cu_1$ at the potentials ranging from -0.9 V vs. RHE to -1.3 V vs. RHE.

Fig. S13. Linear scan voltammetry curves of PtZn@Cu.

Fig. S14. Stability test of $Pt_1Zn_1@Cu_1$.

Fig. S15. Bode phase diagram of catalysts. (a) $Pt_1Ni_1@Cu_1$. (b) $Pt_1Zn_1@Cu_1$.

Fig. S16. Impedance spectrum of catalysts. (a) PtNi@Cu. (b) PtZn@Cu.

Fig. S17. Electrochemical surface area of PtZn@Cu catalysts.

Fig. S18. In-situ FTIR spectra of PtNi@Cu catalyst.

Fig. S19. Partial density of states of ternary alloy catalysts. (a) PdBi@Cu. (b) PtNi@Cu. (c) PtBi@Cu. (d) PtSn@Cu. (e) PtZn@Cu.

Fig. S20. The electron density difference plots of COH* adsorption on PtNi@Cu, Pt@Cu, Ni@Cu

and Cu.

Fig. S21. COHP diagram of COH* adsorption on PtNi@Cu. (a) Cu-C COHP of COH* adsorption.(b) Ni-C COHP of COH* adsorption. (c) Pt-C COHP of COH* adsorption.

Fig. S22. COHP diagram of COH* adsorption on Cu.

Fig. S23. COHP diagram of COH* adsorption on Ni@Cu and Pt@Cu. (a) Cu-C COHP of COH* adsorption on Ni@Cu. (b) Ni-C COHP of COH* adsorption on Ni@Cu. (c) Cu-C COHP of COH* adsorption on Pt@Cu. (d) Pt-C COHP of COH* adsorption on Pt@Cu.

Туре	Catalysts	Products	FE (%)	$J_{\rm i}$ (mA cm ⁻²)	Ref.
Binary alloy	Cu@Bi	НСООН	91.27	-80.12	1
Binary alloy	IrSn	HCOO-	98	-78	2
Binary alloy	Cu-Ni	СО	98.8	-27.6	3
Binary alloy	Pd-Cu IM	C ₁ products	64.95	~ -81	4
Binary alloy	CuZn	C ₂₊ products	91	-136.5	5
Binary alloy	SnCu	C ₂₊ products	79.3	-634.4	6
Ternary alloy	CuZnMn	CH_4	55	-418	7
Ternary alloy	AgCuAu	СО	~97	~ -145.5	8
Ternary alloy	AgCu	СО	~100	-3.9	9
Ternary alloy	CuAgNi	C ₂₊ products	93.2	-818.1	10

Table S1. CO₂RR performance comparison of binary and ternary alloys.

Catalysts	Cu 2p	Ni 2p	Zn 2p	Pt 4f
PtNi@Cu	31.38%	32.66%	-	35.96%
PtZn@Cu	33.88%	-	31.84%	34.29%

 Table S2. Percentage of element contents in PtNi@Cu and PtZn@Cu.

	BiPd@Cu	PtNi@Cu	PtSn@Cu	PtBi@Cu	PtZn@Cu
$\epsilon_{d}\left(M_{1}\right)$	0	-2.77	-3.12	-2.97	-2.91
$\epsilon_{d}\left(M_{2} ight)$	-2.87	-1.36	-1.92	0	-6.74
$\epsilon_{d}\left(Cu\right)$	-2.78	-2.47	-2.84	-2.74	-2.70
d(M ₁ -M ₂)	2.85	2.49	2.75	2.87	2.57

Table S3. The d-band center and M_1 - M_2 bond length of different catalysts.

Reference

- Zhang, Z.; Wang, L.; Yang, X.; Chu, M.; Huang, L.; Fan, J.; Xie, W.; Liu, D.; Yuan, W.; Situ,
 Y., ACS Sustain. Chem. Eng. 2024, 12 (52), 18566-18576.
- 2 Yu, Q.; Wang, S.; Yang, X.; Li, X.; Chen, M.; Wang, W.; Li, X.; Huang, Y.; Zhang, T., *Mater. Today Energy* **2025**, *51*, 101901.
- 3 Cao, X.; Hu, Y.; Hui, D.; Zhang, K.; Chen, S.; Wei, L.; Ye, C.; Pan, G.; Hu, L., ACS Appl. Nano Mater. 2024, 7 (14), 16264-16273.
- 4 Bagchi, D.; Riyaz, M.; Dutta, N.; Chawla, G.; R Churipard, S.; Kumar Singh, A.; C Peter, S., Adv. Energy Mater. 2024, 14 (47), 2402237.
- 5 Zhang, J.; Guo, C.; Fang, S.; Zhao, X.; Li, L.; Jiang, H.; Liu, Z.; Fan, Z.; Xu, W.; Xiao, J.; Zhong, M., *Nat. Commun.* **2023**, *14* (1), 1298.
- Liu, Y.; Yue, Z.; Jin, C.; Zheng, L.; Shi, J.; Li, D.; Wang, Y.; Bai, J.; Leng, K.; Wang, W.; Qu,
 Y.; Li, Q., Small 2025, 21 (8), 2409259.
- 7 Chen, Y.; Lyu, N.; Zhang, J.; Yan, S.; Peng, C.; Yang, C.; Lv, X.; Hu, C.; Kuang, M.; Zheng, G., Small 2024, 20 (15), 2308004.
- 8 Wang, Y.; Wang, B.; Ci, N.; Xie, R.; Chai, G.; Qiu, H.-J.; Zhang, Y., ACS Appl. Nano Mater.
 2025, 8 (12), 6085-6093.
- 9 Li, M.; Hu, Y.; Dong, G.; Wu, T.; Geng, D., Small 2023, 19 (15), 2207242.
- Jia, S.; Cheng, H.; Zhu, Q.; Chen, X.; Xue, C.; Deng, T.; Dong, M.; Xia, Z.; Jiao, J.; Chen, C.;
 Wu, H.; He, M.; Han, B., *Angew. Chem. Int. Ed.* 2025, *64* (26), e202501833.